

National University Rail Center - NURail US DOT OST-R Tier 1 University Transportation Center

NURail Project ID: NURail2013-UIUC-E03

Development and Teaching of a Graduate Course in Multimodal Transportation Safety and Risk

By

M. Rapik Saat, Ph.D. Research Assistant Professor Department of Civil and Environmental Engineering University of Illinois at Urbana-Champaign <u>mohdsaat@illinois.edu</u>

1 March 2014

Grant Number: DTRT13-G-UTC52 (Grant 2)

DISCLAIMER

Funding for this research was provided by the NURail Center, University of Illinois at Urbana - Champaign under Grant No. DTRT12-G-UTC18 of the U.S. Department of Transportation, Office of the Assistant Secretary for Research & Technology (OST-R), University Transportation Centers Program. The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated under the sponsorship of the U.S. Department of Transportation's University Transportation Centers Program, in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof.

TECHNICAL SUMMARY

Title

Development and Teaching of a Graduate Course in Multimodal Transportation Safety and Risk

Introduction

One of the U.S. Department of Transportation (DOT)'s strategic goals is to enhance public health and safety by working toward the elimination of transportation-related deaths and injuries. Near term targets include reducing highway fatalities, rail-related accidents and incidents, and the number of serious hazardous materials transportation incidents. Attaining the goal requires engineers to understand the causal factors and risks in accidents, and determine the most effective ways of mitigating the consequences of transportation accidents in all modes.

This project involved the development of teaching materials and the actual teaching of a course that provides an introduction to transportation risk concepts, risk management framework and risk assessment methodologies to address safety and security of freight and hazardous materials transport by railways, roads, waterways and pipelines.

Description of Activities

The key effort in this project was identifying and reviewing relevant publications and other resources to develop the class lectures and independent projects. The course was an advanced, graduate-level class as part of the Transportation Engineering curriculum in the Department of Civil and Environmental Engineering (CEE) at the University of Illinois at Urbana-Champaign (UIUC).

Outcomes

Eleven students were enrolled when the class was offered in the Fall 2013 semester at UIUC. The syllabus and lectures are appended to this report. Part of the lectures were used by a NURail-affiliated partner, Rutgers University, in their transportation logistics class. The course implemented an active-learning process including:

- Pre-Reading Assignment
- Pre-Class Quiz
- Traditional Lecture
- In-Class Group Discussion
- Risk Analysis Bootcamp two-week group project to complete a route-specific risk analysis

- State-of-the-Practice Paper Review (SOP)
- Individual Term Project & Final Presentation

Conclusions/Recommendations

The course as a whole or part of the lectures can be incorporated in courses at other institutions.

Publications/Examples

See course syllabus and lectures attached.

Primary Contact

Principal Investigator

M. Rapik Saat, Ph.D. Research Assistant Professor Department of Civil and Environmental Engineering University of Illinois at Urbana-Champaign mohdsaat@illinois.edu

NURail Center 217-244-4999

nurail@illinois.edu http://www.nurailcenter.org/

University of Illinois at Urbana-Champaign Department of Civil and Environmental Engineering

CEE 498 TSR - Transportation Safety and Risk

SYLLABUS

Instructors: Dr. M. Rapik Saat, Ph.D. (mohdsaat@illinois.edu)

Semester: Fall 2013

Credit: 3 hours

Weekly Meeting Schedule: 5-6:20pm M/W (2312 Newmark) or Online (for online students)

Course Description:

One of the U.S. Department of Transportation (DOT)'s strategic goals is to enhance public health and safety by working toward the elimination of transportation-related deaths and injuries. Near term targets include reducing highway fatalities, rail-related accidents and incidents, and the number of serious hazardous materials transportation incidents. Attaining the goal requires engineers to understand the causal factors and risks in accidents, and determine the most effective ways of mitigating the consequences of transportation accidents in all modes.

This course provides an introduction to transportation risk concepts, risk management framework and risk assessment methodologies to address safety and security of <u>freight</u> and hazardous materials transport by railways, roads, waterways and pipelines. Students learn about the tools needed to perform comprehensive mode-specific and multimodal transportation risk analyses. Each student is expected to work on a specific transportation safety problem of his/her interest, and identify, assess and mitigate the risk.

This is an advanced, graduate-level class as part of the Transportation Engineering curriculum in the Department of Civil and Environmental Engineering (CEE) at the University of Illinois at Urbana-Champaign (UIUC). This course could also be used as one of the core courses for the newly developed Societal Risk Management (SRM) cross-disciplinary program in the department. This course is being developed as part of the US DOT National University Rail Center (NURail) that UIUC is leading to support the aforementioned U.S. DOT safety strategic goal.

Objectives:

Introduce transportation risk concepts, risk management framework and risk assessment methodologies to address safety and security of <u>freight</u> and hazardous materials transport by railways, roads, waterways, pipelines and air.

CEE 498 TSR - Transportation Safety and Risk

SYLLABUS

List of Principal Topics

- Transportation risk management system
- Structuring decision problem
- Basic GIS & transportation spatial data
- Risk assessment techniques
- Risk communications
- Rail transportation risk
- Road transportation risk
- Highway Safety Manual (HSM)
- Pipelines transportation risk
- Inland waterway (barge) transportation risk
- Maritime transportation risk
- Aviation transportation risk
- Risk reduction strategies
- Hazardous materials consequence models
- Transportation security considerations
- Passenger and transit safety issues
- Other advanced topics in transportation risk analysis

Reading Materials:

Selected industry publications and journal articles related to the course topics

Grading Weights:

- Term project: 60 % (abstract 5%, mid-term draft presentation 15%, final presentation 40%)
- Homework and group assignments: 30%
- Class participation: 10%

CEE Honor Code

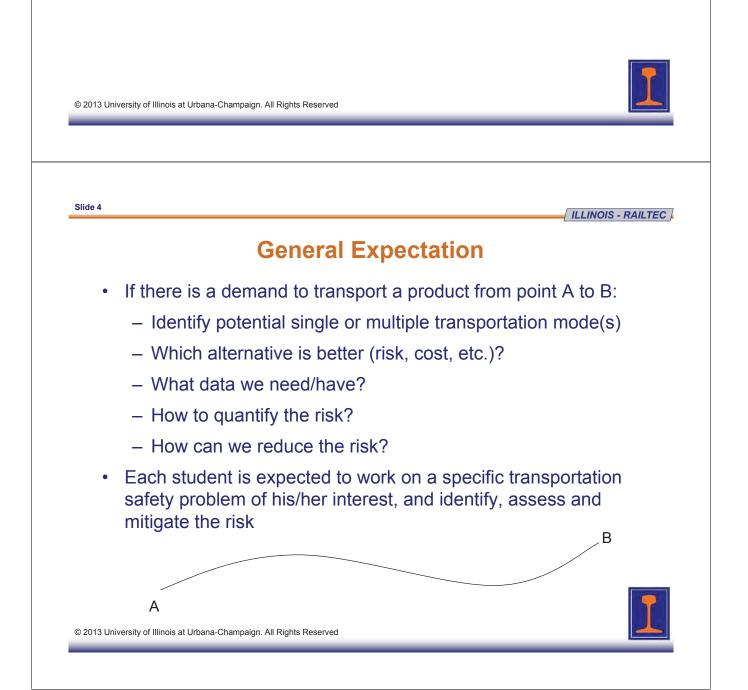
To foster and promote integrity among students, the CEE Honor Code was developed with input from several CEE undergraduate organizations, the CEE Graduate Student Advisory Committee, and the CEE Graduate Affairs Committee. You (the student) commit to honor the code each time you sign an exam, and implicitly whenever you sign homework or other class assignments.

The CEE Honor Code pledge is the following:

I pledge to uphold the highest levels of professional and personal integrity in all of my actions, including 1) never assisting or receiving unfair assistance during exams, 2) never assisting or receiving assistance on class assignments beyond that specified by an instructor, and 3) always fully contributing to group activities that are part of a course activity.


```
Slide 2
```

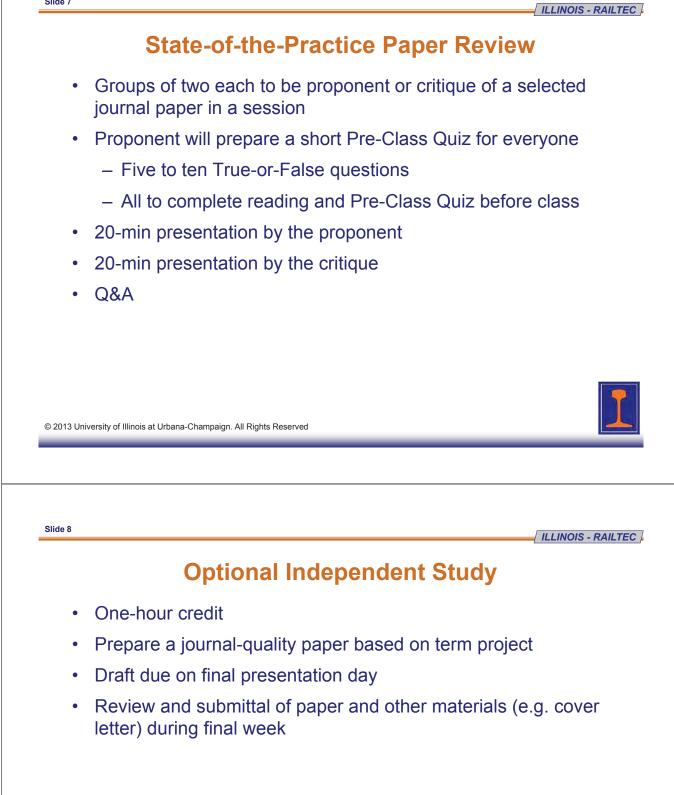
ILLINOIS - RAILTEC


Course Introduction

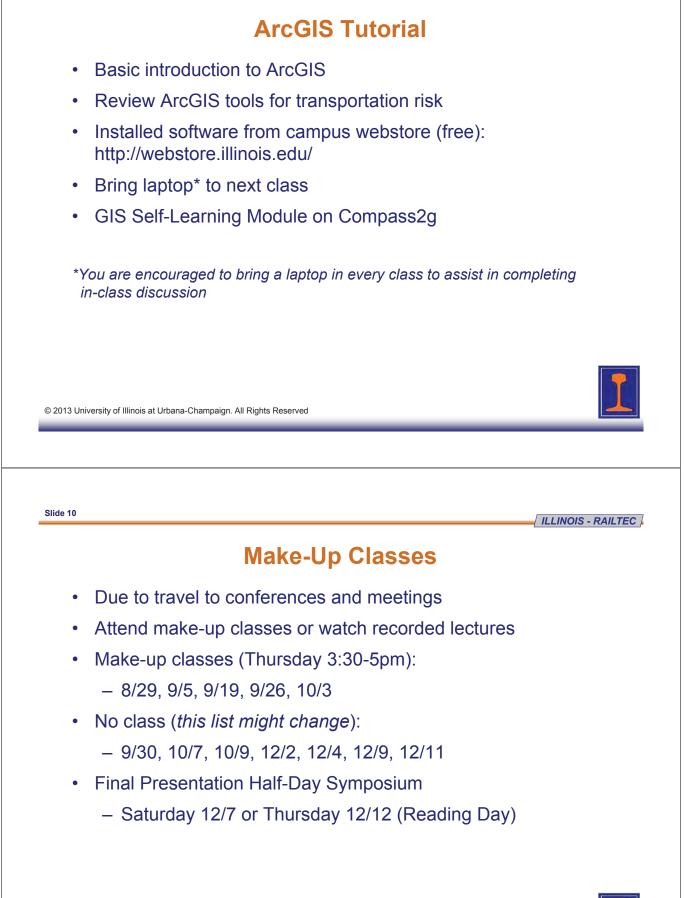
- Introduction to transportation risk analysis, focusing on freight and hazardous materials transportation
- Covers:
 - Transportation risk management framework
 - Transportation risk assessment concepts
 - Transportation risk assessment methodologies
 - Multimodal transportation quantitative risk analysis (QRA)

Learning Outcomes At the end of this course students will be able to: Understand basic concepts in transportation risk Structure transportation risk problems by identifying potential hazards, initiating events, likelihood and accident consequences

- 3. Identify data needs to perform transportation risk analysis
- 4.Perform a comprehensive transportation route risk analysis



Grading


- Term project: 60%
 - Abstract 5% (due date TBA)
 - Mid-term draft final presentation (15%) (dates TBA)
 - Final presentation 40% (a half-day mini-symposium on Saturday 12/7 or Thursday 12/12)
- Homework and group assignments 30%
- Class participation 10%

Slide 6	/ ILLINOIS - RAILTEC)
	Active Learning Process
•	Reading Assignment
•	Pre-Class Quiz
•	Traditional Lecture
•	In-Class Group Discussion
•	Risk Analysis Bootcamp
	 Two-week group project to complete a route-specific risk analysis
•	State-of-the-Practice Paper Review (SOP)
	– See next slide

Slide 5

Slide 9

Slide 11

CEE 498HRP Compass2g Site

- Compass2g site for this class will be set up for:
 - Announcements
 - Syllabus
 - Course plan & schedules
 - Lecture notes
 - Reading assignments
 - Pre-class quizzes

Slide 12	
	ILLINOIS - RAILTEC
Contact Information	
Room : 1243 NCEL	
• Office : 217-333-6974	
• Mobile: 217-721-4448	
Skype: rapiksaat	
E-Mail: mohdsaat@illinois.edu	
Office hours: By appoinment	
 http://cee.illinois.edu/faculty/rapiksaat 	

Acknowledgements

The development of this course is partially supported by the following organizations. The opinions expressed here do not necessarily represent the views of these organizations.

Center for Chemical Process Safety

Hazardous Materials Cooperative Research Program

TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES

© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

UIUC Railroad Courses

FALL 2013

- · CEE 408 Railroad Transportation Engineering
- · CEE 409 Railroad Track Engineering
- CEE 498HSR High-Speed Rail Engineering
- CEE 498TSR Transportation Safety and Risk

SPRING 2014

- CEE 410 Railway Signaling and Control
- CEE 411 Railroad Project Design and Construction
- CEE 498HRP High-Speed Rail Planning
- CEE 598ATE Advanced Track Engineering

Later Semesters

- CEE 498HRM High-Speed Rail Construction Management (Fall 14)
- CEE 498HRO High-Speed Rail Operations and Maintenance (Spring 15)
- CEE 598SRC Shared Rail Corridor Engineering & Operation (TBD)
- CEE 598ART Advances in Railway Technology (TBD)

Slide 13

Slide 1

ILLINOIS - RAILTEC

OVERVIEW OF THE LAC-MEGANTIC DERAILMENT

CEE498 TSR -Transportation Safety and Risk

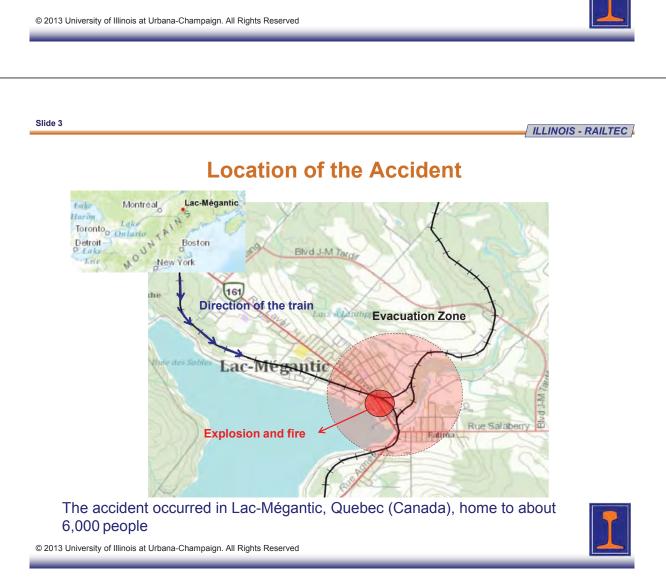
Dr. Rapik Saat, Ph.D. Rail Transportation and Engineering Center – RailTEC

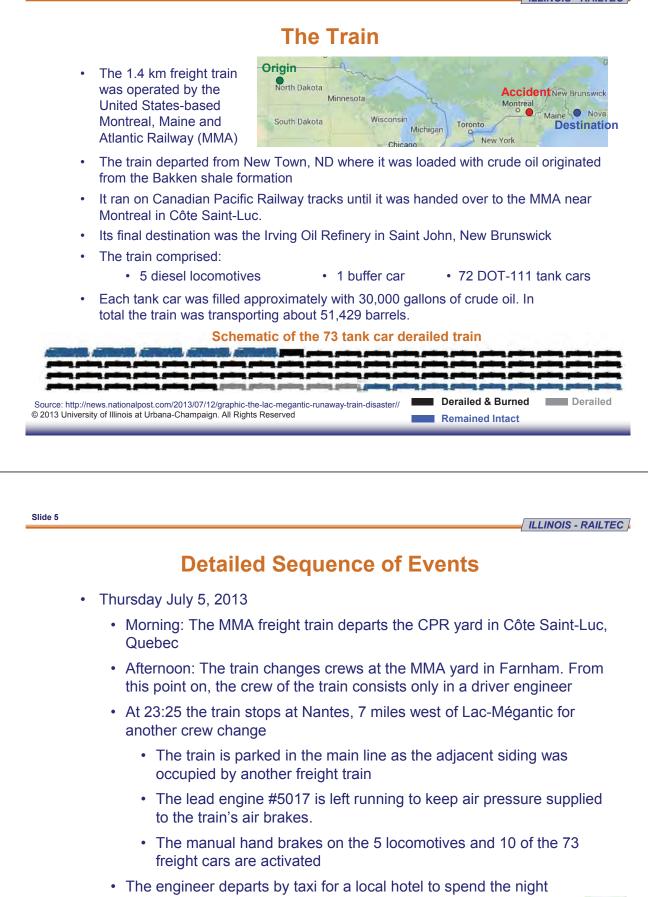
Department of Civil & Environmental Engineering

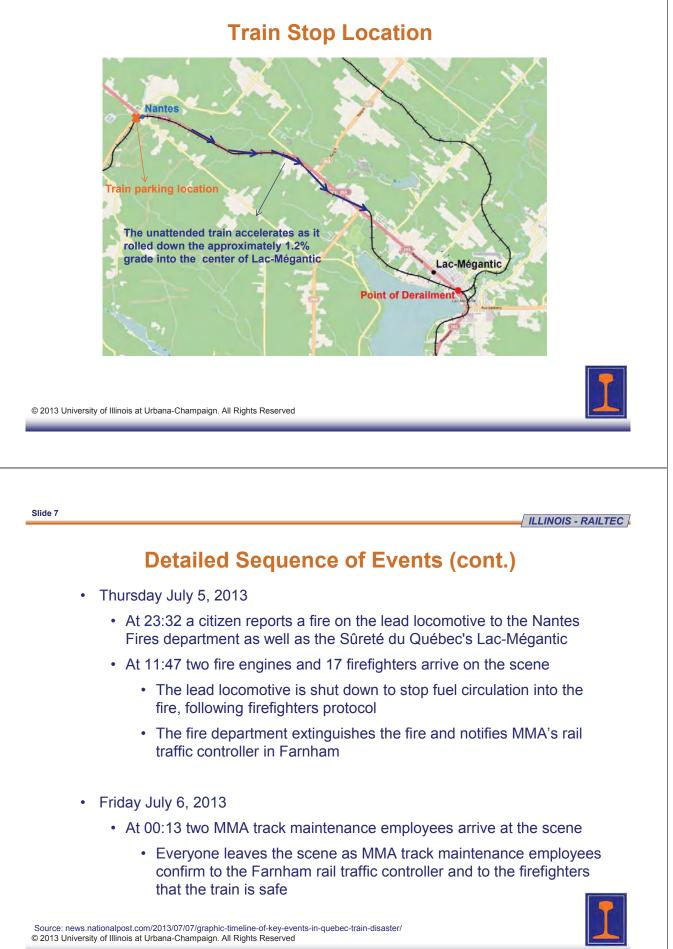
University of Illinois at Urbana-Champaign, U.S.A.

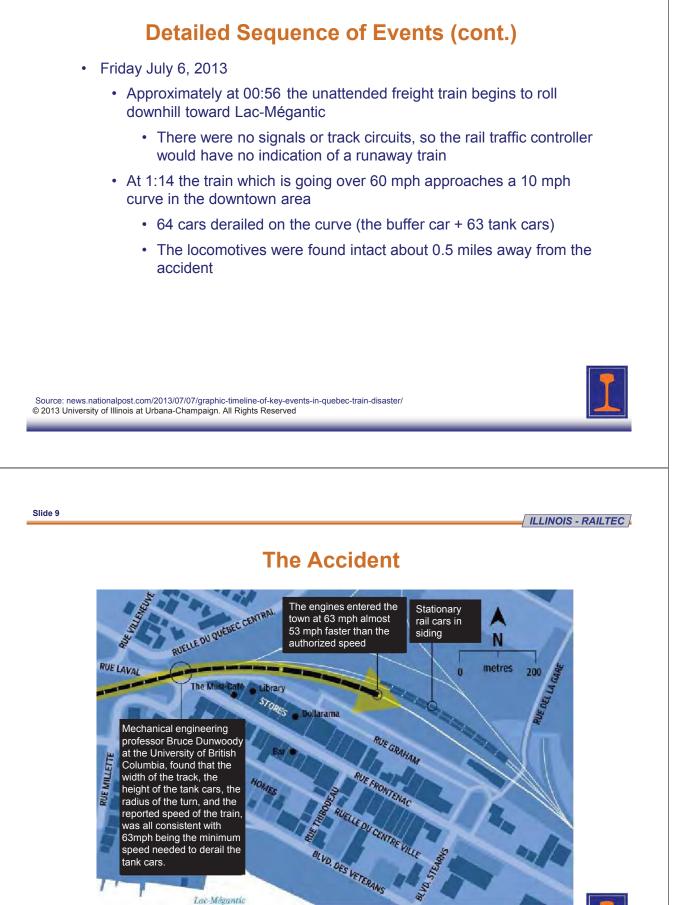
Overview of the Accident

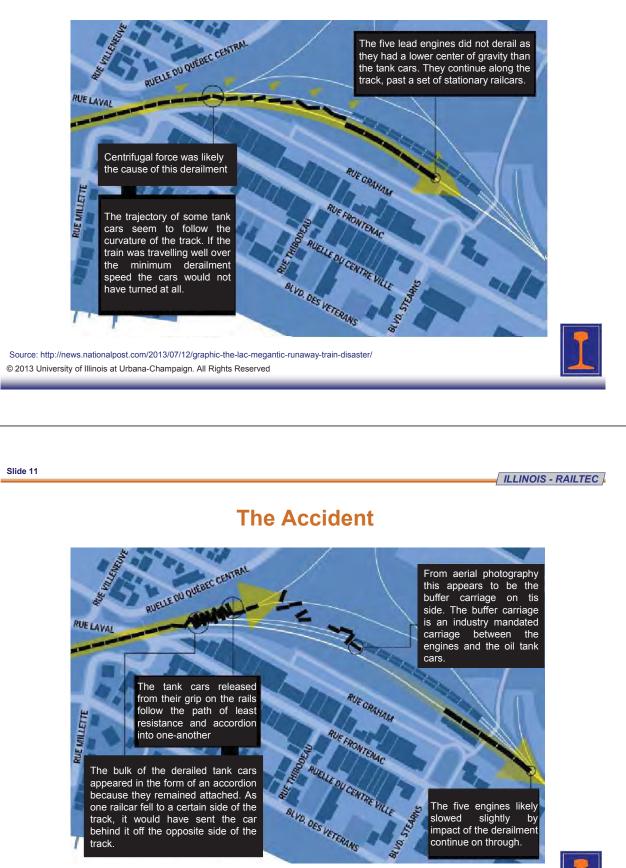
- On July 6, 2013 (Saturday), at • approximately 1:14 am, an unattended 73-car freight train carrying crude oil derailed in Lac-Mégantic, Quebec, Canada
- The resultant fire and explosions from • the accident caused the death of 47 people and the destruction of half of Lac-Mégantic's downtown area
- More than 2,000 people were evacuated
- It is the worst crude oil rail accident in • North American history and the deadliest rail accident in Canada in the past 150 years

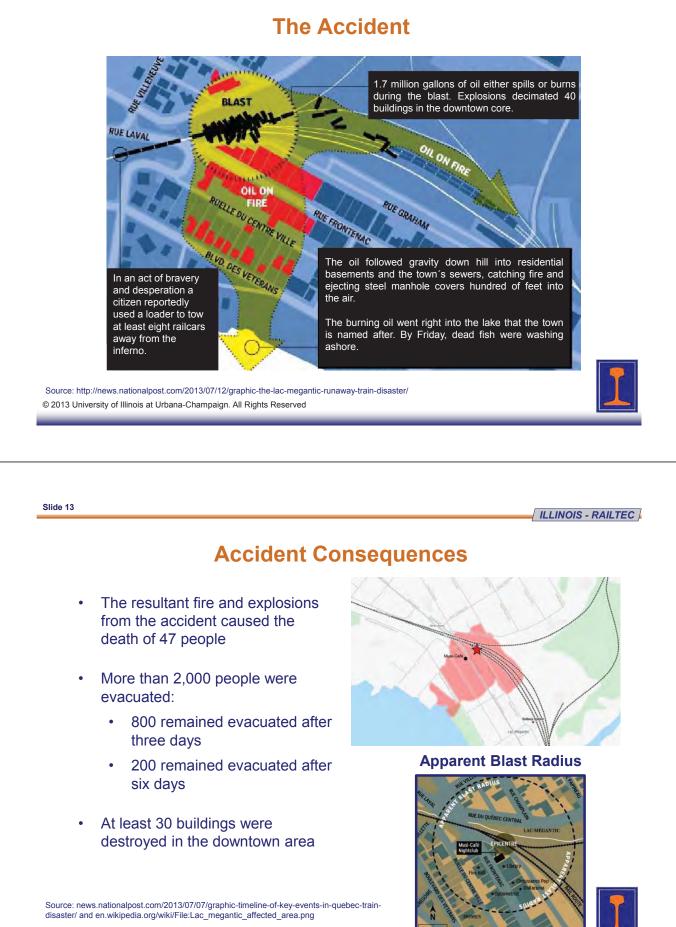



Explosion originated by the derailment of the 73 tank car crude oil train.


Aerial view of Lac-Megantic's Downtown after the accident




Source: news.nationalpost.com/2013/07/07/graphic-timeline-of-key-events-in-quebec-train-disaster/ © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved



Source: http://news.nationalpost.com/2013/07/12/graphic-the-lac-megantic-runaway-train-disaster/ © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

The Accident

Source: http://news.nationalpost.com/2013/07/12/graphic-the-lac-megantic-runaway-train-disaster/ © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

Accident Consequences

Slide 15

ILLINOIS - RAILTEC

Lac-Megantic's Downtown after the accident

Source: http://www.radio-canada.ca/regions/estrie/2013/07/06/001-explosion-lac-megantic-train.shtml/ © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

Lac-Megantic's Downtown: Before and After

- 1. The railroad
- 2. The Musi-Café
- 3. The library
- 4. The former site of a Dollarama store
- 5. A commercial building

- 6. An old chapel that housed a bar
- 7. A bank of Montreal
- 8. A stationery store
- 9. A gift shop called "l'Ambrequin"
- 10. A residential area

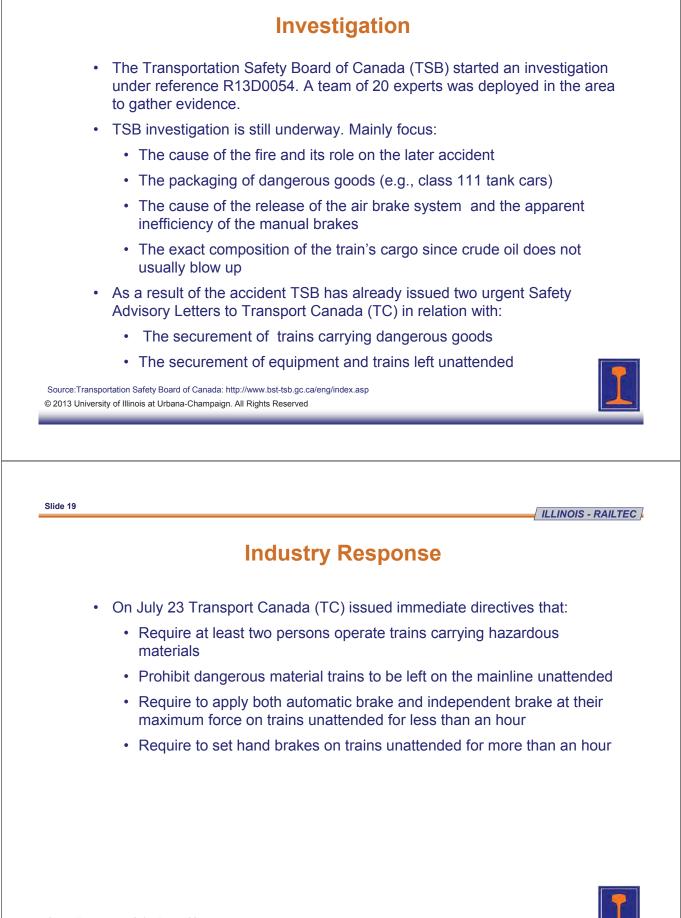
Source: news.nationalpost.com/2013/07/08/before-and-after-photos-show-how-train-explosion-flattened-lac-megantics-bustling-downtown-core © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

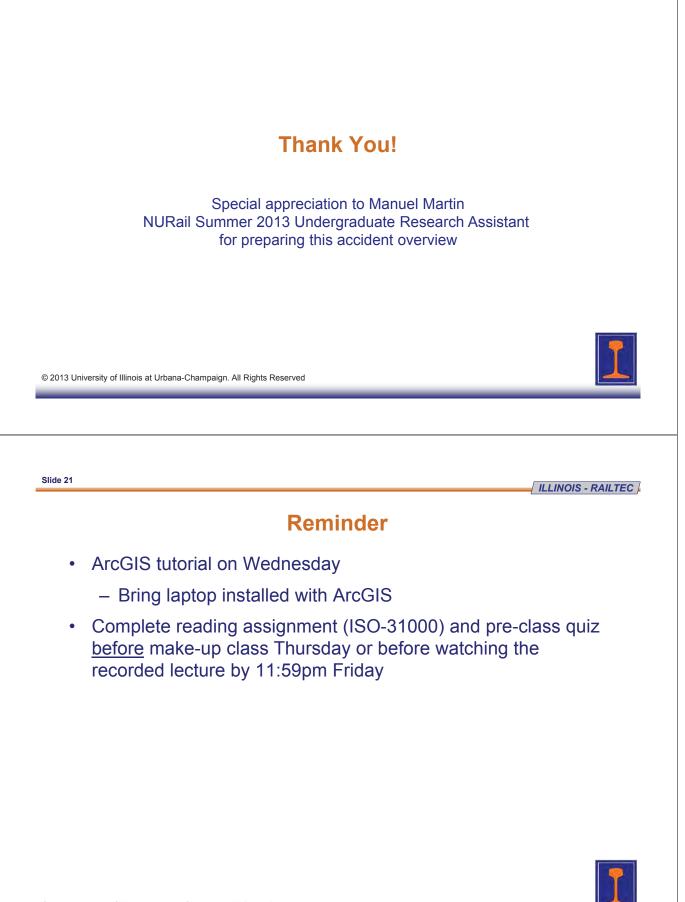
Slide 17

ILLINOIS - RAILTEC

Environmental Impact

 Some sites in Lac Mégantic's downtown will take up to five years to be decontaminated

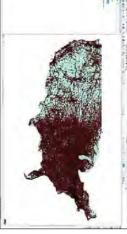



- The Chaudière River was contaminated with 26,000 gallons
- The spill travelled down the river and reached Saint Georges, which is 50 miles away

Source: www.lapresse.ca/le-soleil/affaires/actualite-economique/201307/15/01-4671028-lac-megantic-le-service-postal-reprend-son-cours-normal.php

© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

Data used:


₩

Methodology:

* ₩ Objective:

After loading the three layers, turn off census and points.

Ь

+

2)

3) Using Selection by attributes, select the network of interest. In this tutorial, Main lines in Illinois

University of Illinois at Urbana-Champaign

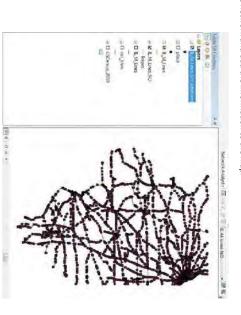
		d By Attributes cd: Vestore: by their attribute ars		e Windows Help						
	Clear	STATEAB	SELECT SP			STATEPS	"FID" "FRAARCD" "MLES"	Method	Layer	Select By Attributes
DH.	Verty Held	STATEAB" + "IL' AND "NET" - "M	Is Cat Ungas Values SELECT * FROM rail Jones WHERE	1 Net	a.e. And		R.	Create a new selection	Prail lines Only show selectable layers in this list	ributes
Annala	Apad.		alsen Go Ta						s in this list	
2	Stere	,				4	B •		в	37

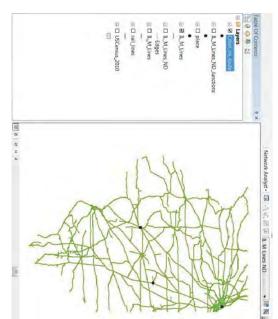
Right-click on rail_lines and click on Export Data

Export data to a new shapefile named IL_M_Lines.shp

Create New Network:

Activate Network Analyst extension by clicking in Customize -> Extension -> Network Analyst.


(select no), and click finish. Leave all default values except for name (in case you want to change it), turns (select no), and directions

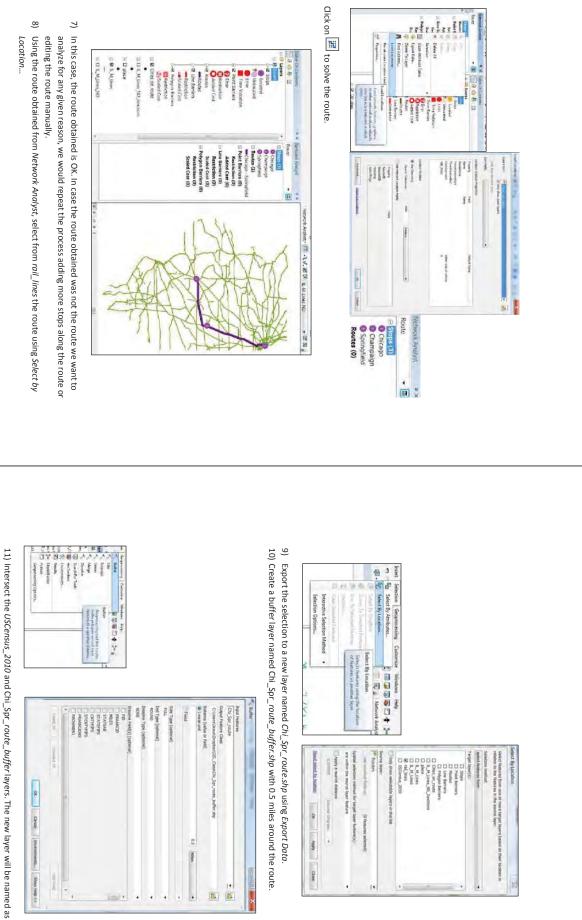


Super-

5) Select the origin and destination cities using the attribute table of *places.shp* and export them to a new layer using Export Data. In this case, the route goes from Chicago to Springfield through Champaign.

6) Calculate the route using Network Analyst:

Click on New Route and open the Network Analyst Window clicking on 📼



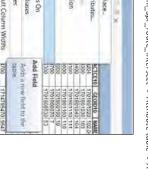
(If the toolbar is not visible, you can right click on Customize -> Toolbars -> Network Analyst)

Right click on Stops(0) -> Load Locations... -> Load from: Cities_on_route -> OK

4

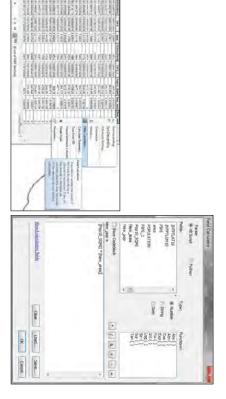
ω

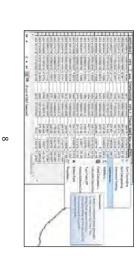
(1) Intersect the USCensus_2010 and Chi_Spr_route_buffer layers. The new layer will be named a Chi_Spr_route_intersect.shp



12) Go to Catalog and right-click on Chi_Spr_route_intersect -> Attribute table -> Add Field...

14) Scroll to the right and right-click on New_area -> Calculate Geometry.. 13) Introduce two new fields: New_area and New_pop. Both are Double type. Click OK.

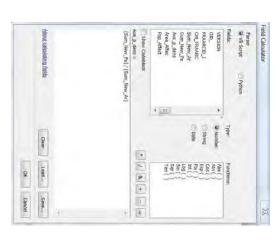

7


An of the second Annual Control of Cont 141 THE A server a serv Control (1996)
 Control (1996)</l 1992 A constraints of the second se Fidd Lanut Calculat Units PCS: North America Abers Equal Area Con coordinate system of the data source the poonetry uuga(c Area 199 Source Mins US [squal n of the data frame. 8 Canod . 4

Note that may be needed to make a projection to be able to calculate the area.

15) Right-click on New_pop -> Field Calculator. Type the equation showed in the following picture and click OK

16) Right-click on New_pop -> Summarize... the population and the area according to buffer id


17) Select FRAARCID to summarize the population and the area, and save the table named Chi_Spr_Table.dbf

De			-		17.10	Y
About summarizing data	 Specify oxigut table C.(U.terr(U.e.tar)Dropbox(DIS_Data)CIN_Spr_Table db) 	PPPS Pop10:SOM Pop10:SOM New_Pro New_Pro Namuen Assemuen Assemuen Assemuen Sumfand Deviation	 Choose one or more summary statistics to be included in the output table. E POPULATION 	FRAARCO	Summunities capation a new tablic containing one record for each unique values of the selected field along with statistics summunicing any of the other fields. 1. Select to field to summarize:	STILLE
9K	Class)CN_Spr_Table.dbf		tatistics to be included in the		iking one record for each unique renarizing any of the other fields	
Cancel		+ <u>m</u>	•	•	e value of the	1

18) Right-click on Chi_Spr_route and click on Join... then fill out the Join menu like in the picture bellow.

Some the similar balance of legars in the last some the field is the tilde to beam the just one AALCED (Figure 1) Minimute in the legal table are shown in the service table Minimute in the target table are shown in the service table momentum for table table are shown in the service table momentum for table table are shown in the service table. Figures and in the target table are tables to the last service is the target table to one lay in table. Figures are in a service from the service tables to be a syndrome table. Syndrome table tables tables tables tables tables tables syndrome tables tables tables tables tables tables tables tables syndrome tables	Come the risk of here is that of here is that of the the head here are the field is that tiltle to head here proceed in the target of the set of the target of target of the target of the target of ta
te resulting table to all fields being table table realist in the your realist in the your	 Course the index tables of the Course the field in the table to be INVACION All logical and tables All logical is not larger tables, appendent mit the paper tables appendent mit the logical tables Invacid is in the tables tables. The neuron is interested the invacid ables, the neuron is measured in tables, the neuron is measured in tables.
to reading table s all fields being	 Close the incluse table of the ISAARCD Choose the field in the liable to the ISAARCD Ann Options Ann options Ann part of the theory table of the liable of the table of the theory table approved of month to target table.
	Show the attribute tables of th Choose the field in the table to be FRAARCED
layers in this list bose the just or:	 Choose the field in the table to to
layers in this list	Show the attribute tables of in
	- 110 A C
over, or load the table from sink:	2. Choose the table to you to this layer, or load the table from slick:
	FRANKCO
it the join will be based on:	1. Oncose the field in this layer that the join will be based on:
	tom attributes fram a table
	What do you wand to join to this layer?
this layer's attribute table so you can bres using this data.	Som wes you append additional data to this layer's attribute table so you can for example, symbolice the layer's features using this data.

- 19) Using Export Data, we export Chi_Spr_route to save the new attribute table. The new layer is
- named Chi_Spr_route_info.shp and contains the information about our analysis.
 20) Introduce three new fields: Ave_pop_density, Area_Affected and Pop_Affected. Both are Double time_Click_OK
- type. Click OK
 21) Right-click on Ave_pop_density -> Field Calculator. Type the equation showed in the following picture and click OK

22) Right-click on Area_Affected -> Field Calculator. Type the equation showed in the following picture and click OK

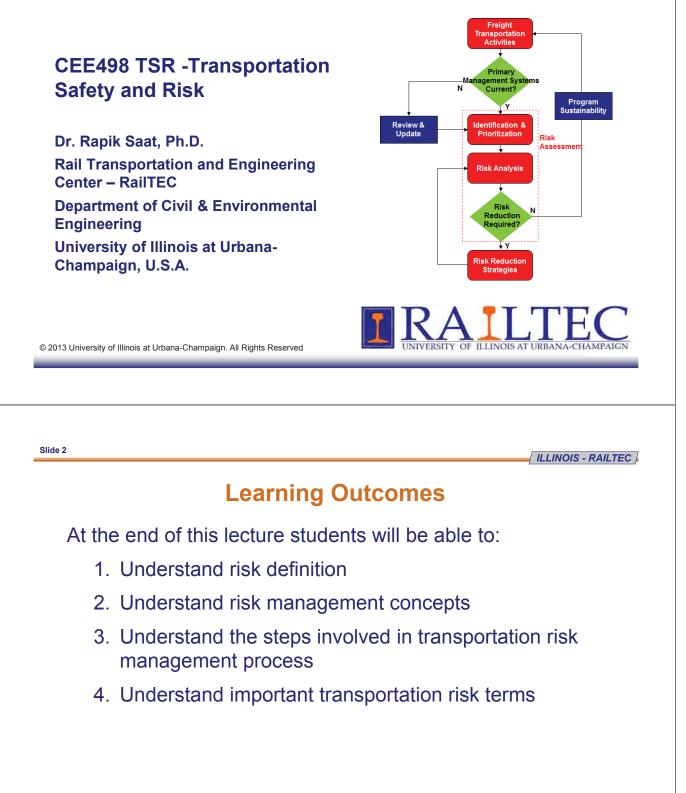
9

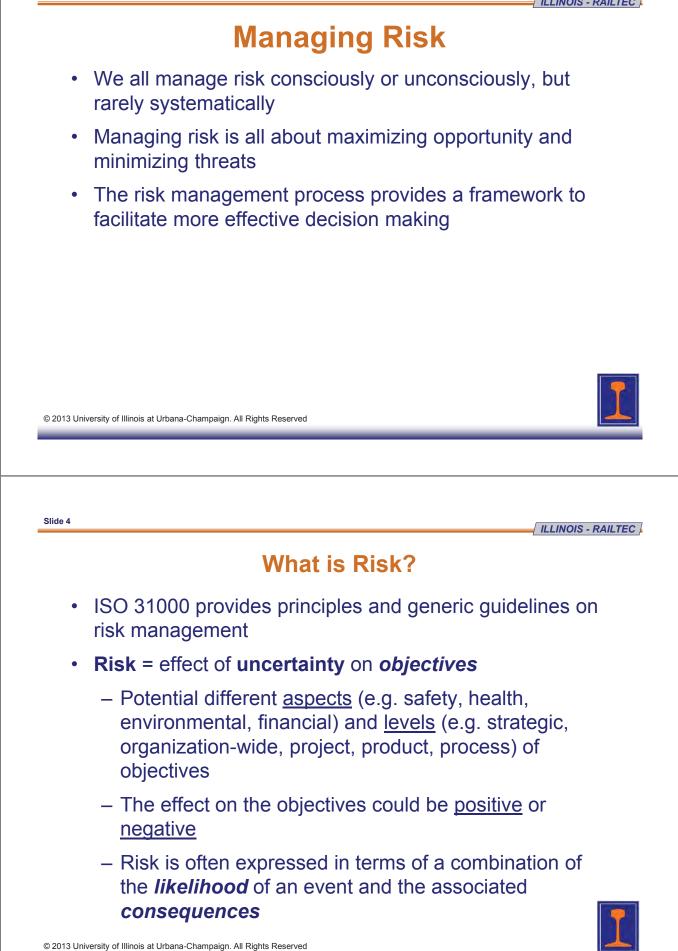

Type: Vunction: Sing Sing ONe Sing Under Sing Sing Sing Sing Sing Sing Sing Sing		About calculating helds	Area_Affec = 0.5 ** 2 * math.pl	STATEAD STATEPS ORTEPS STORTEPS STORTEPS FRAREDING REDUNKET	FID Shape FRAARCID MILES	Parser VII Script Fields:	Field Calculator
Auditoria		Clear		* Dese	-	Type:	
	Cik Cancel		5 8 +	as_nteger_ratio() Jeenhao() Jeenhao() math_acot() math_acot() math_acot()	.conjugate0 .denominator()	Fundions:	×

23) Right-dick on Pop_Affected -> Field Calculator. Type the equation showed in the following picture and click OK

	About calculating fields		[Ave_p_dens] * [Area_Affec]	Pop_Affect =	Pop_Affect	Analyline .	Sum_New_Po	Sam_Hen_Ar	FRAARCID_1	OD_	Fields	Parser A V8 Script Python	LICH CHICHING
	dear				1			Diste	- String-		Type		
96	Lond .					Sqr() Tan()	5 IS	M()	() ()	AMICS.	Functions:		
Cancel	Saw												1

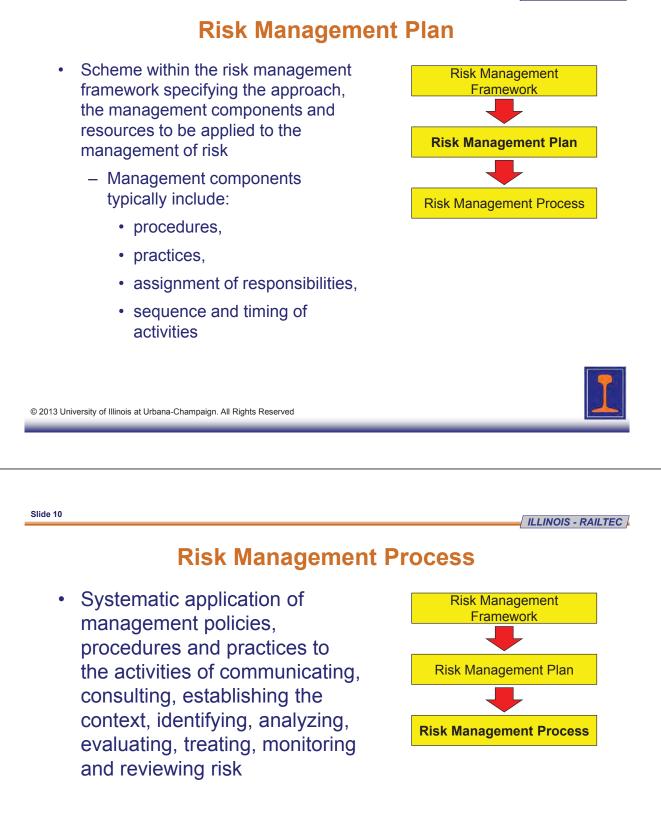
24) Using Symbology we can represent the population distribution along the route.




25) The final deliverable would be the layer named Chi_Spr_route_info.shp, which contains the population affected by segment along our route.
26) The end...

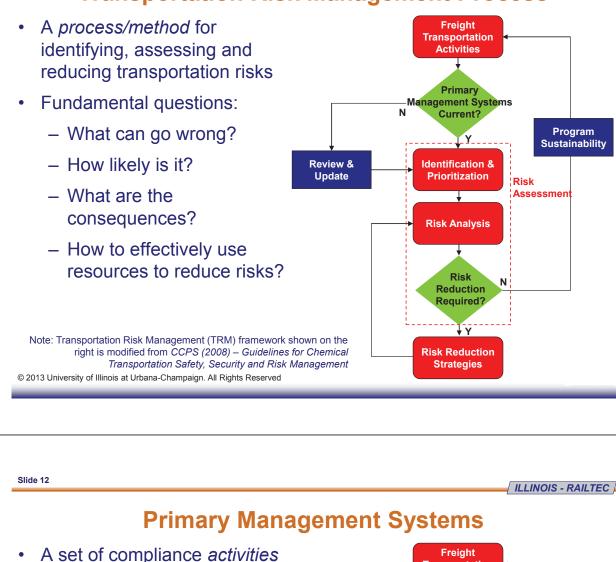
11


TRANSPORTATION RISK MANAGEMENT

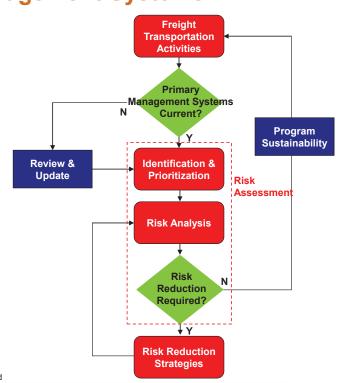

Slide 5

Risk Management Principles

- · Risk management creates and protects value
- Risk management is an integral part of all organizational processes
- · Risk management is part of decision making
- Risk management explicitly addresses uncertainty
- Risk management is systematic, structured and timely
- Risk management is based on the best available information
- Risk management is tailored
- · Risk management takes human and cultural factors into account
- Risk management is transparent and inclusive
- Risk management is dynamic, iterative and responsive to change
- Risk management facilitates continual improvement of the organization


Slide 8		ILLINOIS - RAILTEC
	Risk Management F	ramework
•	Set of <u>components</u> that provide the <u>foundations</u> and <u>organizational</u> <u>arrangements</u> for designing, implementing, monitoring, reviewing and continually improving risk management	Risk Management Framework Risk Management Plan
	 The foundations include the policy, objectives, mandate and commitment to manage risk 	Risk Management Process
	 The organizational arrangements include plans, relationships, accountabilities, resources, processes and activities 	

ILLINOIS - RAILTEC



- Regulations

to address:

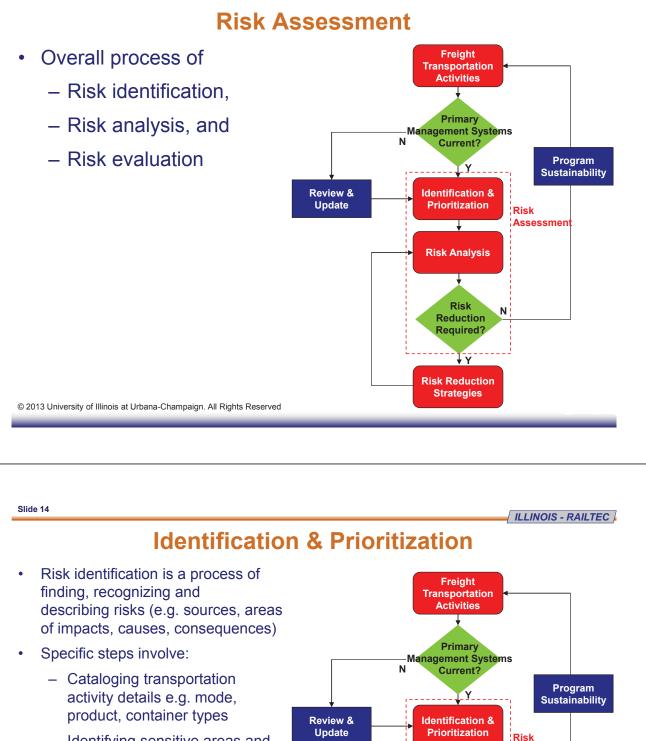
- Standards and guidelines
- Operational management
- Emergency response and preparedness
- Incident reporting and investigation
- Management of change
- Program auditing
- Requires periodical review
 and update

Assessment

Ŧ

Risk Analysis

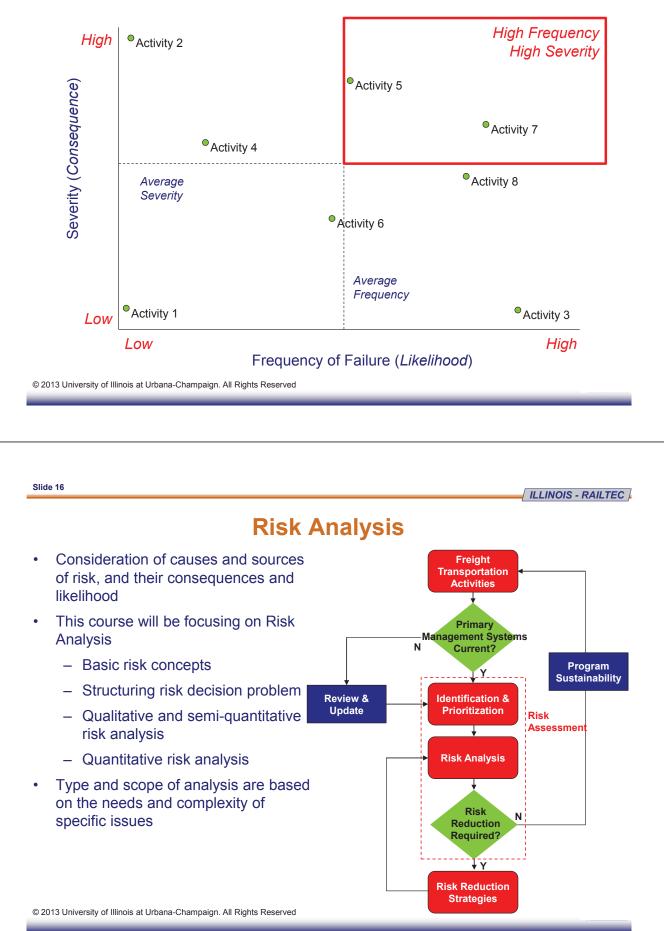
Risk


Reduction Required?

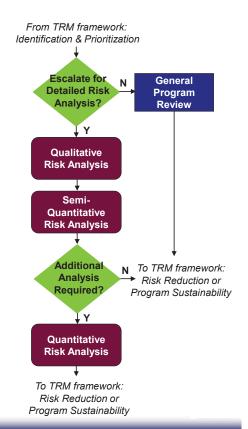
Ψv

Risk Reduction

Strategies

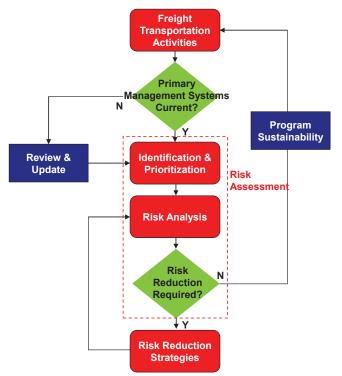

Ν

- Identifying sensitive areas and potential points of failure along the transit route
- Understanding interactions with other stakeholders in the supply chain
- The key objective is to identify specific transportation activities that will require further evaluation and risk assessment


Identification & Prioritization

- A <u>process</u> to specify the risk analysis scope
- Other scope:
 - The entire supply chain
 - A segment of the transportation network
 - A single product or a mixed shipment
 - A subset of all the materials shipped
 - One single mode or multimodal

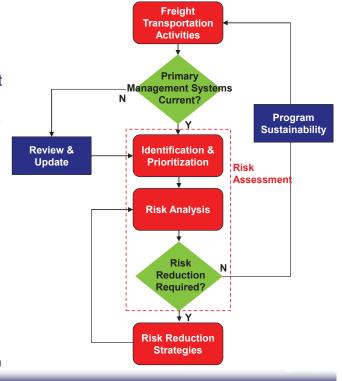
Note: Risk Analysis Protocol shown on the right is modified from CCPS (2008) – Guidelines for Chemical Transportation Safety, Security and Risk Management © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved



Slide 18

ILLINOIS - RAILTEC

Risk Evaluation: Risk Reduction Required?


- Making decisions about which risks need to be reduced
 - Based on the outcomes of risk analysis
- Comparing risk level with established risk criteria or any industry benchmark
- Consideration of not to treat risk, but maintain existing controls
- Consideration of risk tolerance
- Consideration of further analysis

- Evaluating or implementing options to reduce risk, as needed
- May include:
 - avoiding the risk by deciding not to start or continue with the activity that gives rise to the risk
 - taking or increasing the risk in order to pursue an opportunity
 - removing the risk source
 - changing the likelihood
 - changing the consequences
 - sharing the risk with another party or parties (including contracts and risk financing)
 - retaining the risk by informed decision

© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

Slide 20

ILLINOIS - RAILTEC **Program Sustainability** A process to ensure the risk Freight Transportation management process remains Activities current Primary Ongoing commitment to Management Systems Ν managing risk **Current?** Program Continuous improvement Sustainability Review & Identification & Adjusting to emerging trends Update Prioritization Risk Assessment Ŧ Keeping current on evolving transportation risk analysis **Risk Analysis** practices Continuing communications Risk Ν with external and internal Reduction **Required?** stakeholders Īv **Risk Reduction** Strategies © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

Other Key Risk Terms

- Event: occurrence or change of a particular set of circumstances
- Release incident
- Hazard
- Likelihood
- Consequence

@ 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

Slide 22

ILLINOIS - RAILTEC

Initiating Event: Accidents

• Example types of accident-initiated events

Road	Rail	Waterway	Air	Pipeline
Collision Overturning Grade Crossing Cargo Shifting	Collision Derailment Grade Crossing	Collision Grounding Ramming Capsizing Allision	Crash Cargo Shifting	External Impact

- Potential causes:
 - Infrastructure defects (e.g. road/rail track)
 - Equipment defects
 - Human factors
 - Navigational failures
 - Control system failures
 - External events

Slide 23

Initiating Event: Non-Accidents

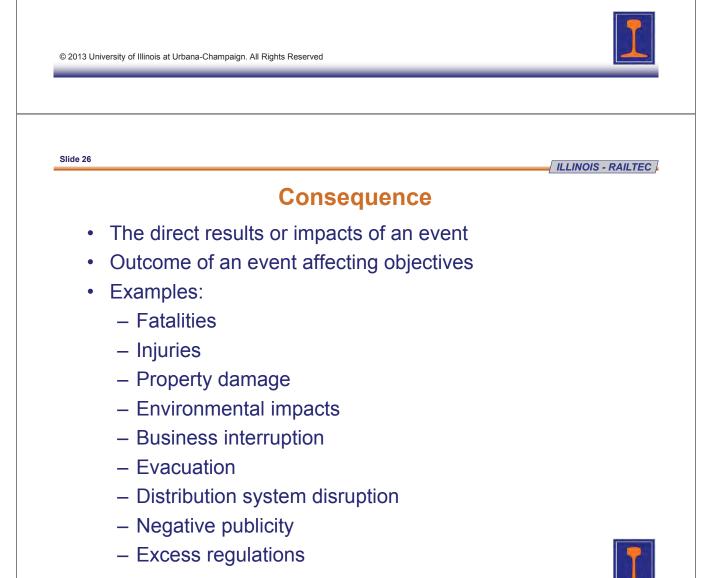
- Potential causes:
 - Improper securement
 - Corrosion
 - Metallurgical failure
 - Overpressure
 - Equipment component failures (e.g. valves, rupture disks, fittings)
 - Overfilling or underfilling
 - Relief device activation due to surges
 - Contamination
 - Temperature changes
 - Control system failures

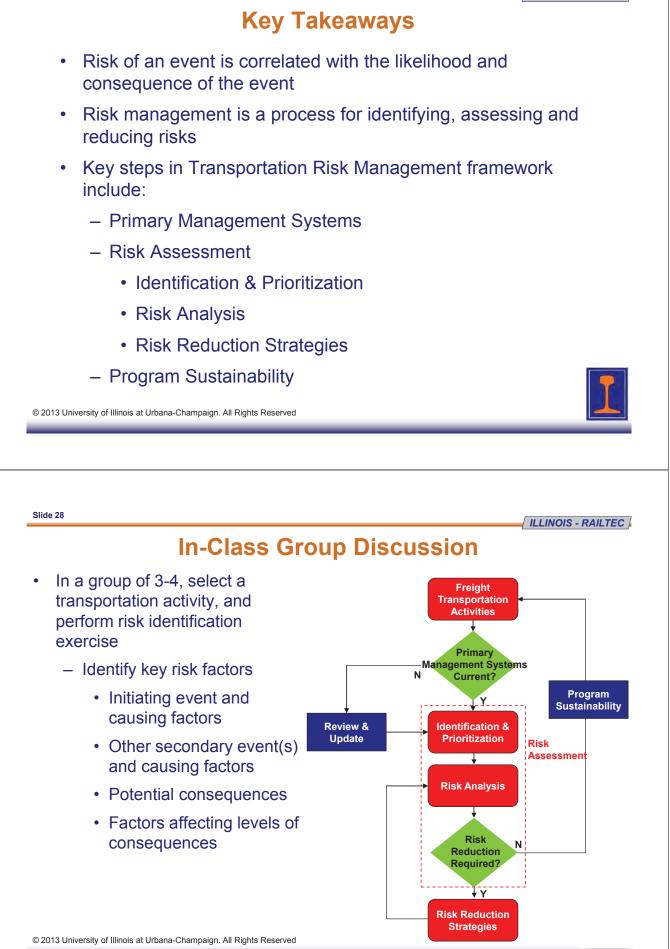
© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

ILLINOIS - RAILTEC

Release Incident

- The loss of containment of material
- Hazard: inherent property or characteristics of a material, systems, or process that has the potential for causing injury and/or damage to people, property and/or the environment

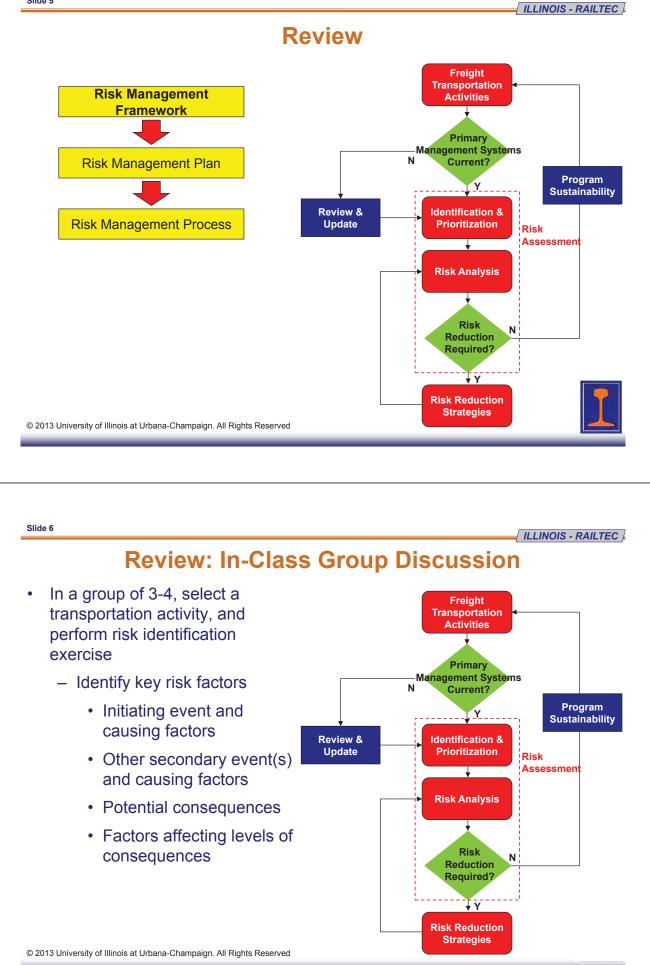


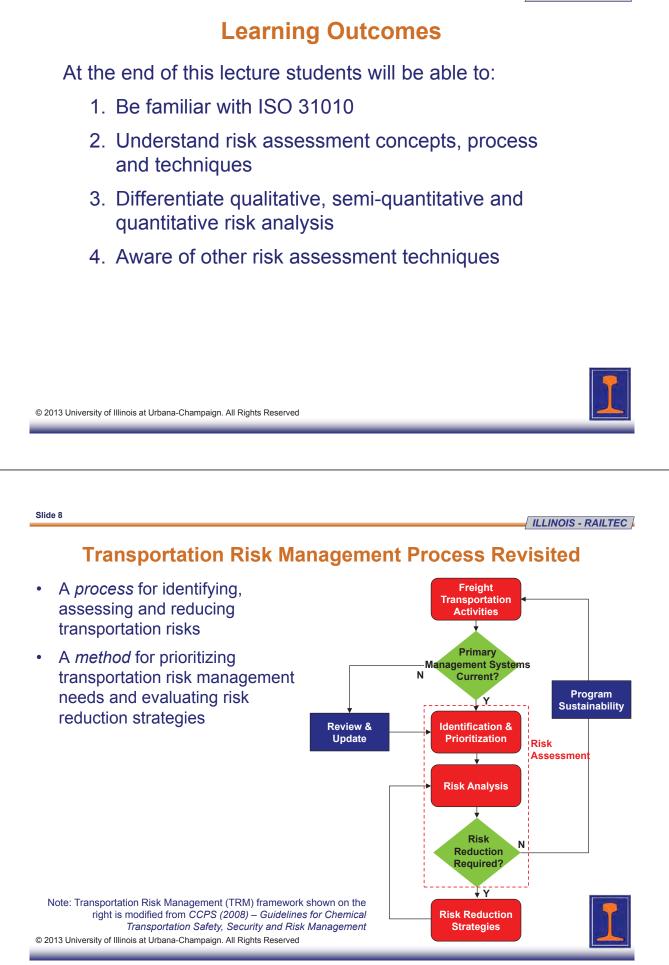


Likelihood


- The measure of the probability or frequency of an event
- Chance of something happening
- Key likelihood estimates:
 - Initiating event rate
 - Conditional probability of release
 - Release size probability distribution
 - Consequence exposure probability distribution

Thank You!	
© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved	
Slide 30	ILLINOIS - RAILTEC
Additional Resources	
 ISO 31000. Risk Management – Principles and Guidelines, International Standard Organization, I 31000:2009(E). 	ISO
© 2013 University of Illinois at Urbana-Champaign, All Rights Reserved	


ILLINOIS - RAILTEC



- Opponent: Syed Taha, Hsiao-Hsuan Liu

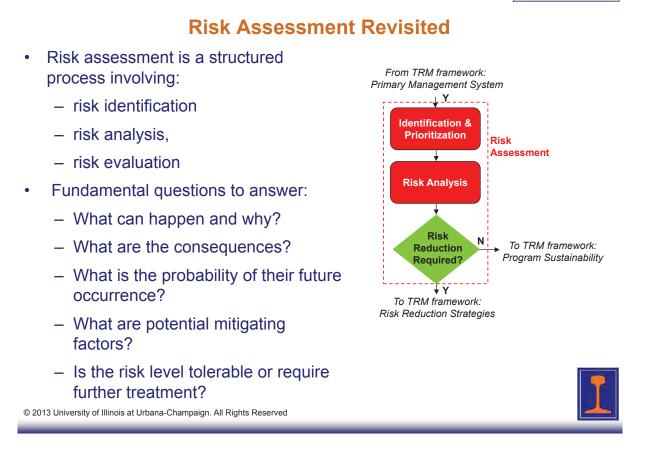
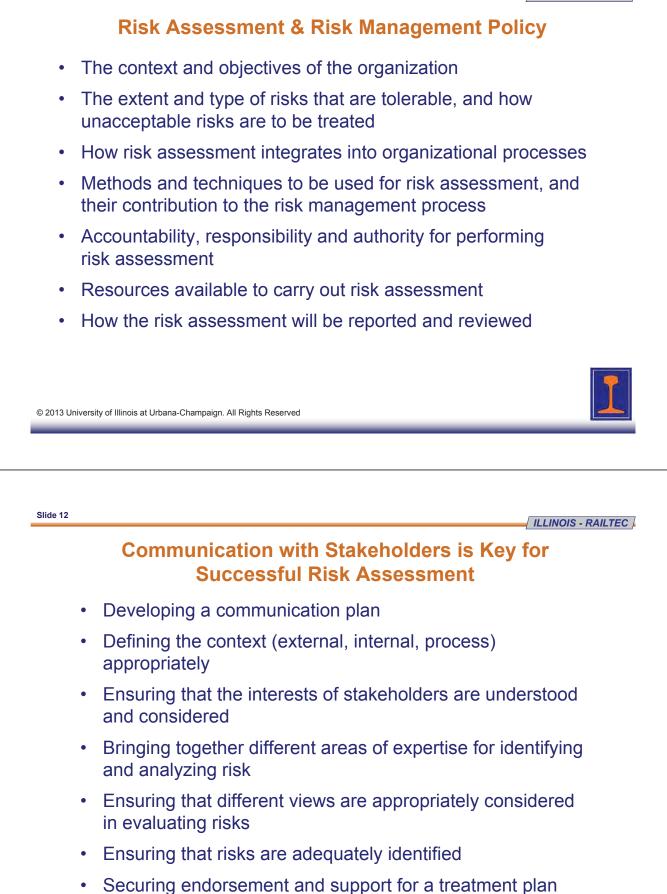
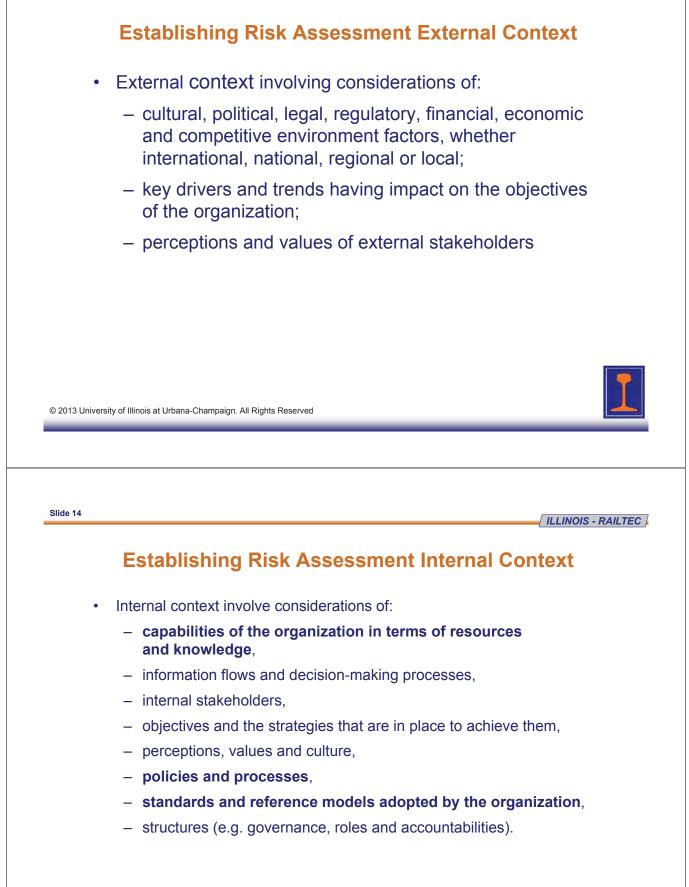


	Table view Calendar	view Ad	ministration		Time zone. Central Time
		Most popula	ar date: Saturda	y, December 7, 2013 10:00) AM - 3:00 PM Close poll 🔻
		December Sat 7	2013 Thu 12		
	8 participants	10:00 AM - 3:00 PM	10:00 AM - 3:15 PM		
	💼 🖉 🚺 Rapik Saat	(4)	1		
	Taha Syed	J.			
	Chen-Yu Lin	1	(1)		
	Jeff LaHucik	4			
	Yu Qian	4			
	Tyler Dick		4		
	Yuto Sakakibara	(4)	(1)		
	Andrew Scheppe	4			
	Your name	Yes (Yes) No	Yes (Yes) No		
	Yes Ifneedbe N	2	2		
		0 1	4		
	On save synchronize to - No		4	Save Cannot ma	ke it
Slide 4				Save Cannot ma	
Slide 4				Save Cannot ma	ike it / ILLINOIS - RAILTEC
	T	o calendar -			ILLINOIS - RAILTEC
		o calendar -			ILLINOIS - RAILTEC
Ş	T	o calendar -	tice P	aper Rev	/ ILLINOIS - RAILTEC
Groups	State-of-the-	Pract	tice P	aper Rev	/ ILLINOIS - RAILTEC
 Groups journal 	State-of-the-	Pract	tice P	aper Rev	<i>ILLINOIS - RAILTEC</i> iew a selected
 Groups journal Propon 	State-of-the-	Pract De prop on a short	tice P	aper Rev	<i>ILLINOIS - RAILTEC</i> iew a selected
 Groups journal Propon (email) 	State-of-the- s of two each to b paper in a sessionent will prepare	Pract De prop on a short	tice P ponent o t Pre-Cl	aper Rev or critique of ass Quiz for	<i>ILLINOIS - RAILTEC</i> iew a selected
 Groups journal Propon (<i>email</i>) Five 	State-of-the- s of two each to b paper in a sessionent will prepare by Tuesday 5pm	Pract De prop on a short) =alse q	tice P ponent of t Pre-Cl uestion	aper Rev or critique of ass Quiz for s	<i>ILLINOIS - RAILTEC</i> iew a selected everyone
 Groups journal Propon (<i>email I</i> – Five – All te 	State-of-the- s of two each to b paper in a sessi ent will prepare by Tuesday 5pm e to ten True-or-F	Pract pe prop on a short) =alse q ing and	tice P ponent of the Pre-Cl uestion d Pre-C	aper Rev or critique of ass Quiz for s lass Quiz be	<i>ILLINOIS - RAILTEC</i> iew a selected everyone
 Groups journal Propon (<i>email I</i> – Five – All te 20-min 20-min 	State-of-the- s of two each to k paper in a sessi ent will prepare by Tuesday 5pm e to ten True-or-F o complete read	Pract De prop on a short) =alse q ing and the pro	tice P ponent of t Pre-Cl uestion d Pre-C pponent	aper Rev or critique of ass Quiz for s lass Quiz be	<i>ILLINOIS - RAILTEC</i> iew a selected everyone

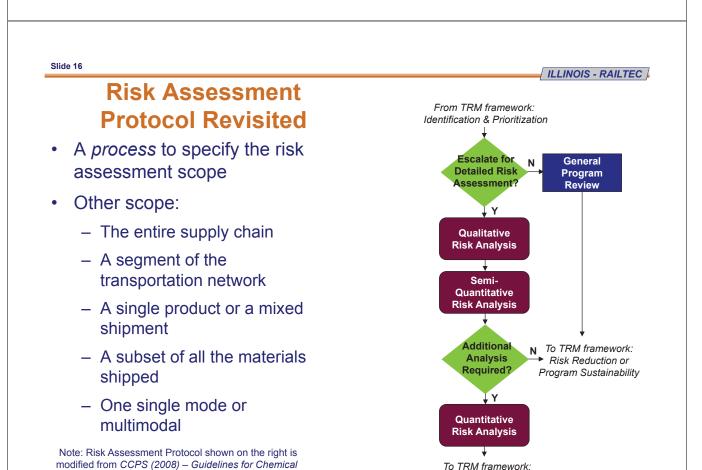



Slide 10

ILLINOIS - RAILTEC

Risk Assessment Purpose and Benefits

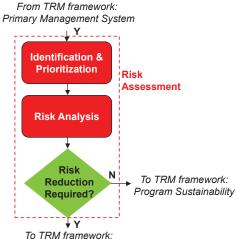
- Purpose: provides evidence-based information and analysis to make informed decisions on how to treat particular risks
- Principal benefits:
 - understanding the risk and its potential impact upon objectives
 - providing information for decision makers
 - contributing to the understanding of risks, in order to assist in selection of treatment options
 - identifying the important contributors to risks and weak links in systems and organizations
 - comparing of risks in alternative systems, technologies or approaches
 - communicating risks and uncertainties
 - assisting with establishing priorities
 - contributing towards incident prevention based upon post-incident investigation
 - selecting different forms of risk treatment;
 - meeting regulatory requirements
 - providing information that will help evaluate whether the risk should be accepted when compared with pre-defined criteria
 - assessing risks for end-of-life disposal



Establishing Risk Assessment Process Context

- Process context involve considerations of:
 - defining accountabilities and responsibilities,
 - defining the extent of the risk management activities to be carried out, including specific inclusions and exclusions,
 - defining the extent of the project, process, function or activity in terms of time and location,
 - defining the relationships between a particular project or activity and other projects or activities of the organization,
 - defining the risk assessment methodologies,
 - defining the risk criteria,
 - defining how risk management performance is evaluated,
 - identifying and specifying the decisions and actions that have to be made,
 - identifying scoping or framing studies needed, their extent, objectives and the resources required for such studies.

© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved


Risk Reduction or Program Sustainability

Transportation Safety, Security and Risk Management © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

Risk Identification Revisited

- Risk identification is a process of finding, recognizing and describing risks (e.g. sources, areas of impacts, causes, consequences)
- Methods can include:
 - evidence based methods, examples of which are check-lists and reviews of historical data;
 - systematic team approaches where a team of experts follow a systematic process to identify risks by means of a structured set of prompts or questions;
 - inductive reasoning techniques such as HAZOP.

© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

Risk Reduction Strategies

ILLINOIS - RAILTEC

 Part of - critical detergent component omitted (ex: surfactant)

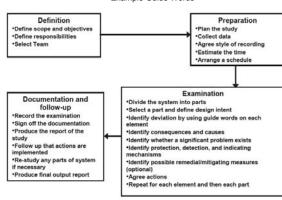
· Reverse - detergent is contaminated

· Other than - wrong detergent used

 Early - detergent added too early (ex: if you need to pre-tinse bulk soil to drain before washing with detergent)

- Late - detergent added too late in the

with a harmful hazard


Slide 18

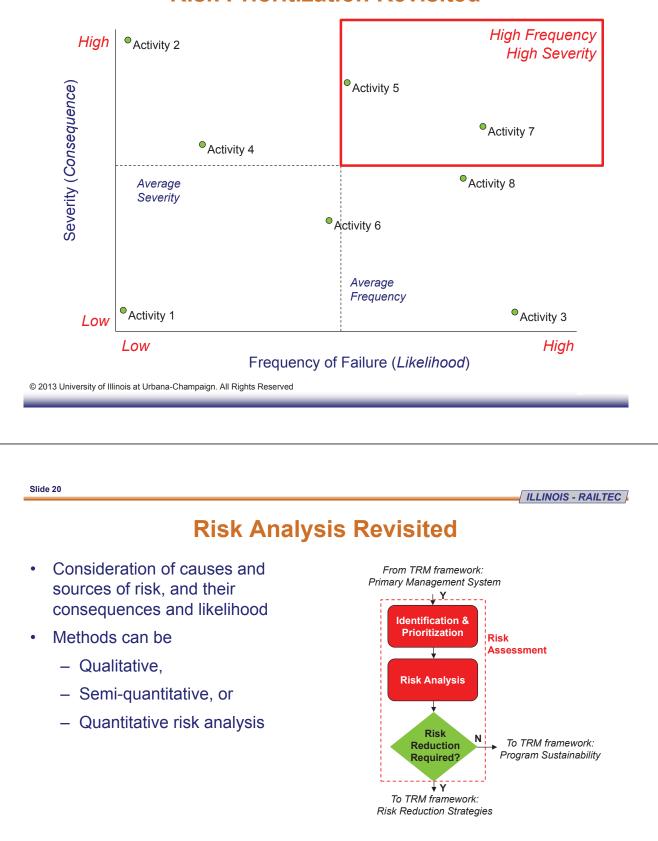
Hazard and Operability Analysis (HAZOP)

- HAZOP is a structured and systematic brainstorming technique for system examination and risk management
- A technique for identifying potential hazards in a system
- Based on a theory that assumes risk events are caused by deviations from design or operating intentions
- Identification of such deviations is facilitated by using sets of "guide words"
- This approach is a unique feature of the HAZOP methodology that helps stimulate the imagination of team members when exploring potential deviations

· No or not - no detergent added

- More too much detergent volume added
- (difficult to rinse) More - supplied detergent solution
- concentration is too high
 Less too little detergent volume added (soil isn't effectively removed)
- Less supplied detergent solution concentration is too low
 - cleaning cycle Example Guide Words

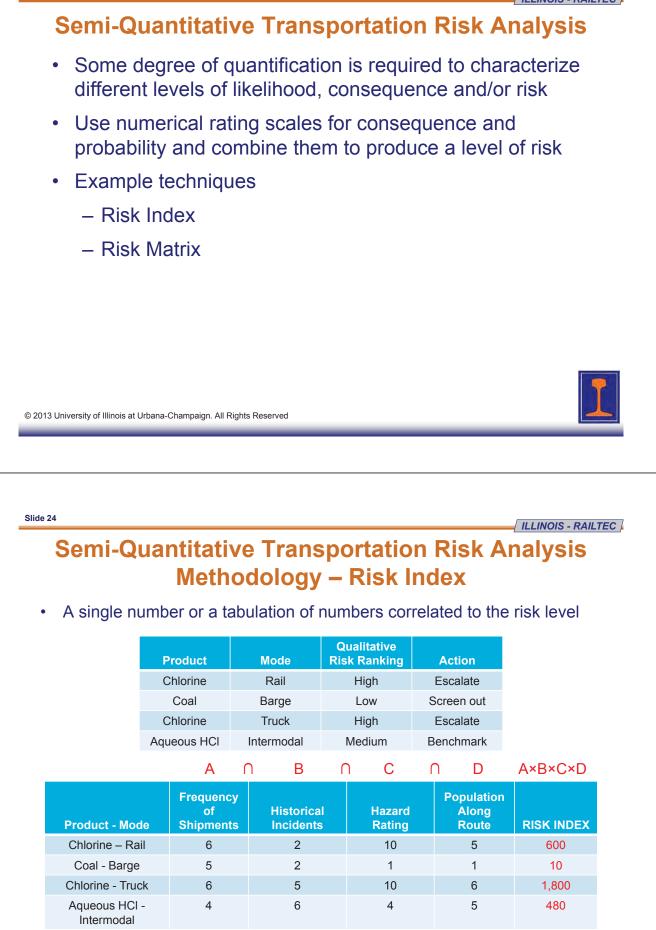
General Methodology


Source: HAZOP Training Guide.

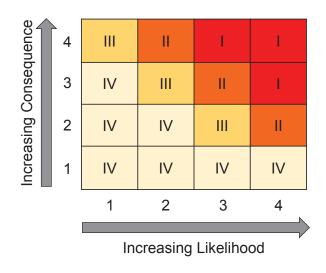
Manufacturing Technology Committee - Risk Management Working Group, Product Quality Research Institute: http://www.oshrisk.org/assets/docs/Tools/3%20Conduct%20Risk%20Assessments/HAZOP_Training_Guide.pdf © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

ILLINOIS - RAILTEC

Risk Prioritization Revisited



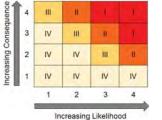
ILLINOIS - RAILTEC **Qualitative Transportation Risk Analysis** Defines likelihood, consequence and level of risk by • significant levels such as "high", "medium" or "low" Establishing benchmark comparisons Compare and improve operating practices to align or exceed the desired industry best practices and regulatory standards Identifying and elevating issues of concern - Develop and respond to a checklist of general review of transportation issues Understand the impact of anticipated changes • - Identify concerns with a change in operating practices © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved Slide 22 ILLINOIS - RAILTEC **Example Qualitative Transportation Risk Analysis Results**


Product	Mode	Qualitative Risk Ranking	Action
Chlorine	Rail	High	Escalate
Coal	Barge	Low	Screen out
Chlorine	Truck	High	Escalate
Aqueous HCI	Intermodal	Medium	Benchmark

Semi-Quantitative Transportation Risk Analysis Methodology – Risk Matrix

 A graphical tool to classify the level of risk based on the levels of likelihood and consequence

© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

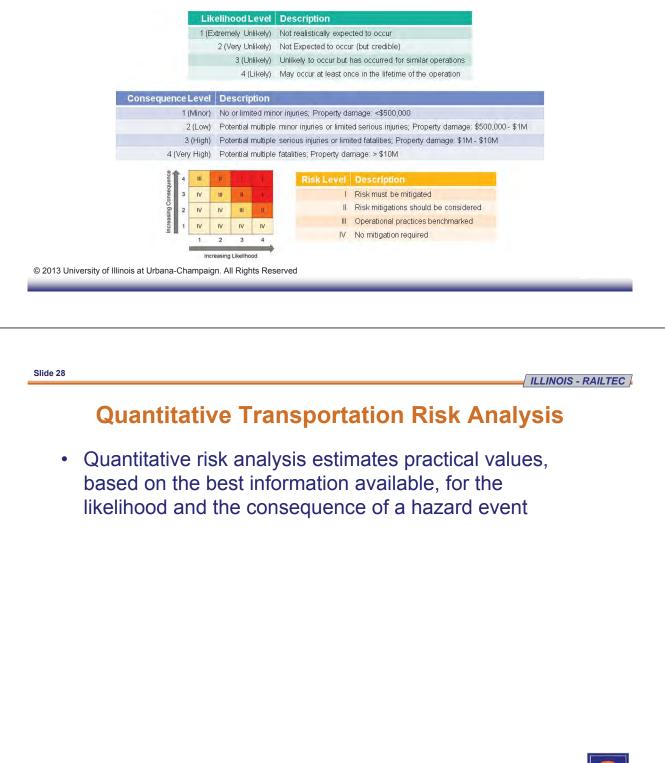


ILLINOIS - RAILTEC

Semi-Quantitative Transportation Risk Analysis Methodology – Example Risk Matrix Definitions

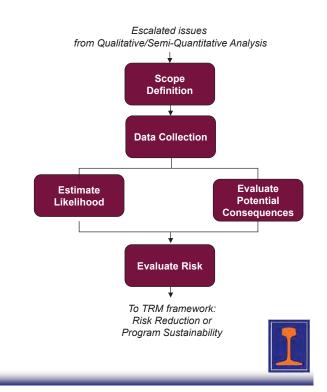
Likelihood Level	Description
1 (Extremely Unlikely)	Not realistically expected to occur
2 (Very Unlikely)	Not Expected to occur (but credible)
3 (Unlikely)	Unlikely to occur but has occurred for similar operations
4 (Likely)	May occur at least once in the lifetime of the operation

Consequence LevelDescription1 (Minor)No or limited minor injuries; Property damage: <\$500,000</td>2 (Low)Potential multiple minor injuries or limited serious injuries; Property damage: \$500,000 - \$1M3 (High)Potential multiple serious injuries or limited fatalities; Property damage: \$1M - \$10M4 (Very High)Potential multiple fatalities; Property damage: > \$10M


Risk Level	Description
I	Risk must be mitigated
II	Risk mitigations should be considered

- III Operational practices benchmarked
- IV No mitigation required
 - Note: Example is modified from CCPS (2008) Guidelines for Chemical Transportation Safety, Security and Risk Management

- In the same group from the Risk Management lecture, develop a semi-quantitative risk model to address the selected transportation activity (focus on the overall likelihood and consequence of <u>one</u> hazard event)
- Based on your specific transportation activity, describe the conditions where the likelihood and consequence impact is high or low

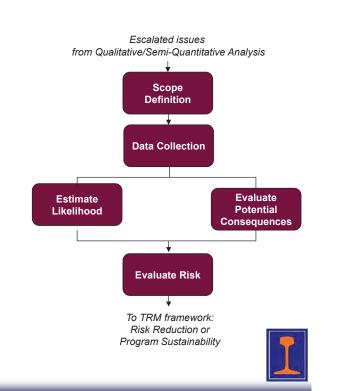


Transportation Quantitative Risk Analysis Protocol

- 1. Scope definition
 - Single mode or multimodal
 - Route characteristics
 - Vehicle/container types
 - Consequence impacts
- 2. Data collection and evaluation
 - Literature review, public data, confidential data
- 3. Likelihood estimation
- 4. Consequence evaluation

© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

5. Risk evaluation

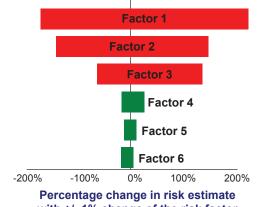


Slide 30 ILLINOIS - RAILTEC Likelihood Estimation Key transportation risk likelihood Escalated issues estimates: from Qualitative/Semi-Quantitative Analysis - Initiating event rate Scope - Conditional probability of Definition release Release size probability **Data Collection** distribution Consequence exposure Evaluate Estimate probability distribution Likelihood Potential Consequences Typical approaches: Historical data Evaluate Risk Probability forecasts using predictive or simulation techniques To TRM framework: Risk Reduction or Expert opinion Program Sustainability

Consequence Analysis

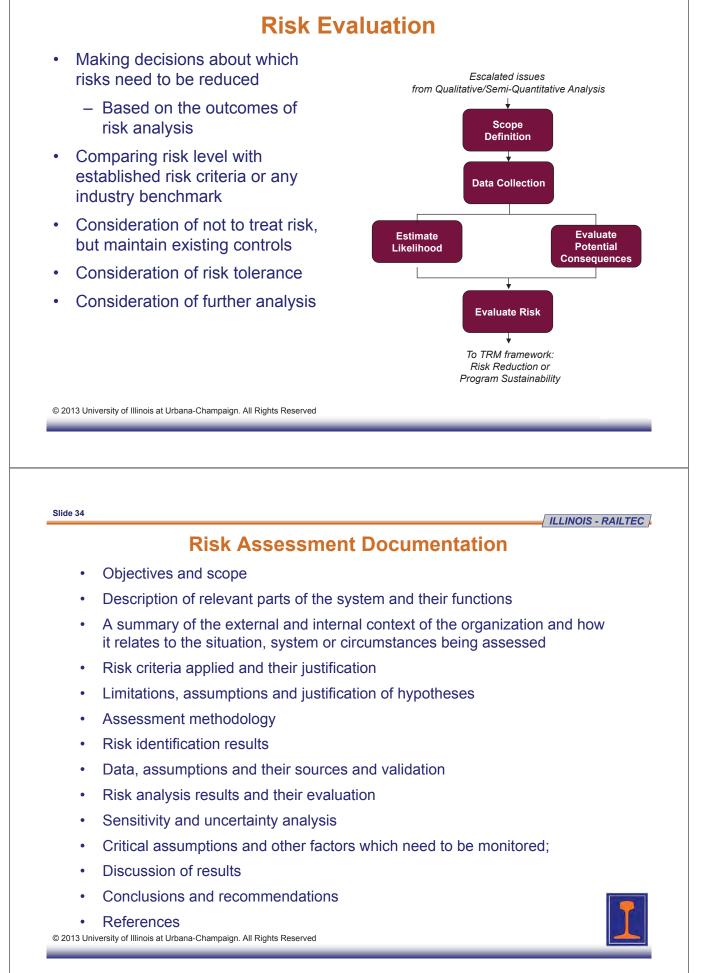
- Consequence analysis determines the nature and type of impact which could occur assuming that a particular event situation or circumstance has occurred
- Example: fatalities, injuries, property damage, environmental impacts, business interruption, evacuation, distribution system disruption, negative publicity, excess regulations
- Consequence analysis can vary from a simple description of outcomes to detailed quantitative modeling or vulnerability analysis

© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved



Slide 32

ILLINOIS - RAILTEC


Uncertainties and Sensitivities

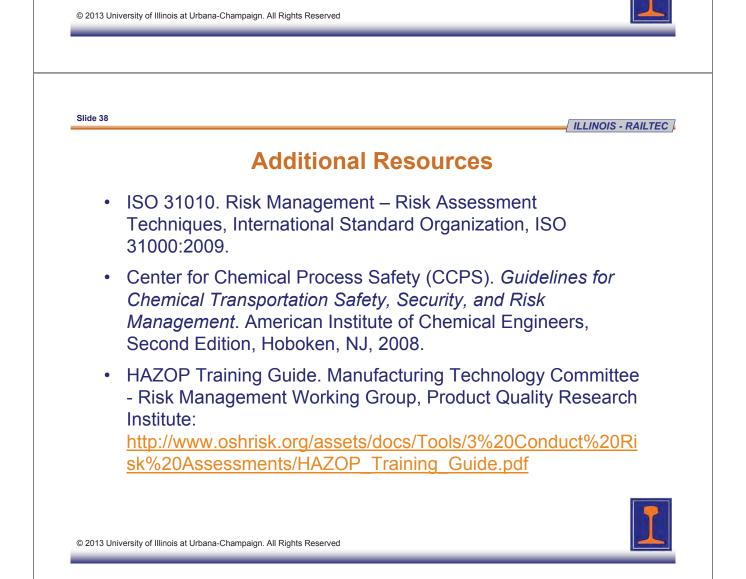
- There are often considerable
 uncertainties associated with the
 analysis of risk
- Uncertainty analysis involves the determination of the variation or imprecision in the results
- Sensitivity analysis involves the determination of the size and significance of the magnitude of risk to changes in individual input parameters
 - It is used to identify those data which need to be accurate, and those which are less sensitive and hence have less effect upon overall accuracy

with +/- 1% change of the risk factor

Risk Assessment Dols: ISO 30010 Appendix AIdentificationConsequence ProbabilityLevel of riskevaluationDelphSA1NA21NANANANADelphSANANANANANADelphSANANANANANANaNANANANANANANaNANANANANANANaNANANANANANANaNANANANANANANaNANANANANANANaNANANANANANANaNANANANANANANaNANANANANANANaNANANANANANANaNANANANANANANaNANANANANANANaNANANANANANANaNANANANANANANaNANANANANANANaNANANANANANANaNANANANANANANaNANANANANANANaNANANANANANANaNASASA	Slide 35	-	Risk assessment process					
Risk Assessment Dools: ISO 30000 Appendix A Situated or semi-structed SA SA NA NA NA NA Binistroming SA NA NA NA NA NA NA Binistroming SA SA NA NA NA NA NA Binistroming SA SA SA SA SA SA SA SA Binistroming SA SA SA SA SA SA SA SA Binistroming SA SA SA SA SA SA SA Binistroming SA SA SA SA SA SA		Tools and techniques		Risk analysis			Risk	
Risk Assessment Dols: ISO 30001 Appendix ADolDolDolAntNANANANANANaNANANANANANaNANANANANANaNANANANANANaNANANANANANaNANANANANANANANANANANANANANANANANANANANaNA<					Probability	Level of risk	evaluation	1
Risk Assessment Dols: ISO 30010 Appendix AImenian (noNoNoNoNoAppendix ANoNoNoNoNoNoNaSaSaSaSaSaSaNaNaNaNaNaNaNaSaNaNaSaSaSaSaSaSaSaSociario analysisSaSaSaSaSaSaSaSociario analysisSaSaSaSaSaSaSaSociario analysisSaSaSaSaSaSaSaSociario analysisSaSaSaSaSaSaSaSociario analysisSaSaSaSaSaSaSaSociario analysisSaSaSaSaSaSaSaSociario analysisSaSaSaSaSaSaSaSociario analysisSaSaSaSaSaSaSa		-	SA ¹⁾	NA ²⁾	NA	NA	NA	_
Status SA NA	Risk Assessment	interviews	SA	NA	NA	NA	NA	
Appendix A Initial manages SA Initial manages Initial manages <td></td> <td>Delphi</td> <td>SA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td></td>		Delphi	SA	NA	NA	NA	NA	
Appendix A Initial manages SA Initial manages Initial manages <td>Tools: ISO 30010</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>NA</td> <td>_</td>	Tools: ISO 30010						NA	_
Hazard Analysis and Critical Control Points (HACCP) SA SA NA NA SA Environmental risk assessment SA			SA	NA	NA	NA	NA	_
Points (HACCP) SA SA INA INA SA Environmental risk assessment SA SA<	Appendix A	(HAZOP)	SA	SA	A ³⁾	A	A	_
Structure « What II? » (SWIFT) SA A A A Business impact analysis SA <	Appendix A	Points (HACCP)					SA	_
Scenario analysis SA SA A A A Business impact analysis A SA SA A A A Root cause analysis NA SA SA </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td>								_
Business impact analysis A SA A A A Root cause analysis NA SA SA <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></td<>								_
Root cause analysis NA SA A							-	-
Pailure mode effect analysis SA A A A A A A SA SA SA A <td rowspan="4"></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>								-
Fault tree analysis A NA SA A A Event tree analysis A SA SA A A NA Cause and consequence analysis A SA SA SA A A Cause and consequence analysis SA SA SA NA NA NA Cause and consequence analysis SA SA SA NA NA NA Cause and consequence analysis SA SA SA NA NA NA Cause and consequence analysis SA SA SA NA NA NA Cause and consequence analysis SA SA SA A A NA Cause and consequence analysis SA SA SA SA A A Cause and consequence analysis SA SA SA SA SA A A Decision tree NA SA SA <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>		-						-
Event tree analysis A SA A A NA NA<							-	-
© 2013 University of Illinois at Urbana-Champaion All Rights Ra A SA SA SA A A 0 2013 University of Illinois at Urbana-Champaion All Rights Ra A SA SA SA SA A A		-					NA	-
© 2013 University of Illinois at Urbana-Champaion. All Rights rate Image: Champaion. All Rights rate * 0 2013 University of Illinois at Urbana-Champaion. All Rights rate * 0 2013 University of Illinois at Urbana-Champaion. All Rights rate * 0 2013 University of Illinois at Urbana-Champaion. All Rights rate * 0 2013 University of Illinois at Urbana-Champaion. All Rights rate * 0 2013 University of Illinois at Urbana-Champaion. All Rights rate * 0 2013 University of Illinois at Urbana-Champaion. All Rights rate * 0 2013 University of Illinois at Urbana-Champaion. All Rights rate * 0 2013 University of Illinois at Urbana-Champaion. All Rights rate * 0 2013 University of Illinois at Urbana-Champaion. All Rights rate * 0 2013 University of Illinois at Urbana-Champaion. All Rights rate * 0 2013 University of Illinois at Urbana-Champaion. All Rights rate * 0 2013 University of Illinois at Urbana-Champaion. All Rights rate * 0 2013 University of Illinois at Urbana-Champaion. All Rights rate * 0 2013 University of Illinois at Urbana-Champaion. All Rights rate * 0 2013 University of Illinois at Urbana-Champaion. All Rights rate * 0 2013 University of Illinois at Urbana-Champaion. All Rights rate * 0 2013 University of Illinois at Urbana-Champaion. All Rights rate		-						-
© 2013 University of Illinois at Urbana-Champaion. All Rights Re		Cause-and-effect analysis	SA	SA	NA	NA	NA	1
Human reliability analysis SA SA SA SA SA A Bow tie analysis NA A SA SA SA SA A Bow tie analysis NA A SA SA SA SA SA A Reliability centred maintenance SA		Layer protection analysis (LOPA)	A	SA	A	A	NA	1
Bow tie analysis NA A SA SA A Reliability centred maintenance SA		Decision tree	NA	SA	SA	A	A	
Reliability centred maintenance SA NA SA SA <td></td> <td>Human reliability analysis</td> <td>SA</td> <td>SA</td> <td>SA</td> <td>SA</td> <td>А</td> <td></td>		Human reliability analysis	SA	SA	SA	SA	А	
Sneak circuit analysis A NA SA A A A A Motil:-cirteria decision analysis A SA SA A A A A A A A <		Bow tie analysis			SA	SA		
Markov analysis A SA NA NA NA NA Markov analysis A SA NA NA NA SA Monte Carlo simulation NA NA NA NA NA SA Bayesian statistics and Bayes Nets NA SA SA NA NA SA FN curves A SA SA SA A SA Consequence/probability matrix SA SA SA SA A Cost/benefit analysis A SA SA A A Multi-criteria decision analysis A SA SA A A Multi-Criteria decision analysis A SA SA A A Multi-Criteria decision analysis A SA SA A A 1° Strongly applicable. 1° Strongly applicable. 1° Not applicable. 1° Not applicable.								_
Monte Carlo simulation NA NA NA NA SA Bayesian statistics and Bayes Nets NA SA NA NA SA FN curves A SA SA A SA Risk indices A SA SA A SA Consequence/pobability matrix SA SA SA A SA Cost/benefit analysis A SA SA A A A Multi-criteria decision analysis (MCDA) A SA A SA A A *) Strongly applicable. *) Not applicable. ** ** ** ** **							NA	_
Bayesian statistics and Bayes Nets NA SA NA NA SA FN curves A SA SA A SA Risk indices A SA SA A SA Consequence/probability matrix SA SA SA A SA Cost/benefit analysis A SA SA A A Multi-criteria decision analysis (MCDA) A SA A A A *) Strongly applicable. *) Not applicable. *) Not applicable. *//// *//// *//// *////		-						_
FN curves A SA SA A SA Risk indices A SA SA A SA A SA SA SA B B B B <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td>								_
© 2013 University of Illinois at Urbana-Champaion. All Rights Re								+
© 2013 University of Illinois at Urbana-Champaion. All Rights Re								+
© 2013 University of Illinois at Urbana-Champaion. All Rights Re								+
© 2013 University of Illinois at Urbana-Champaign. All Rights Re							-	+
© 2013 University of Illinois at Urbana-Champaion. All Rights Re		Multi-criteria decision analysis						1
© 2013 University of Illinois at Urbana-Champaion. All Rights Re		· · · · ·	1					_
* Applicative.	© 2013 University of Illinois at Urbana-Champaign. All Rights	Re 2) Not applicable.						
		· Applicanie.						-

ILLINOIS - RAILTEC

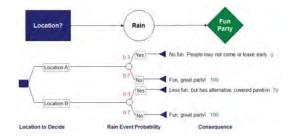
Key Takeaways


- Risk assessment provides evidence-based information and analysis to make informed decisions on how to treat particular risks
- Risk assessment involves risk identification, risk analysis and risk evaluation
- Risk analysis methods can be qualitative, semiquantitative, or quantitative

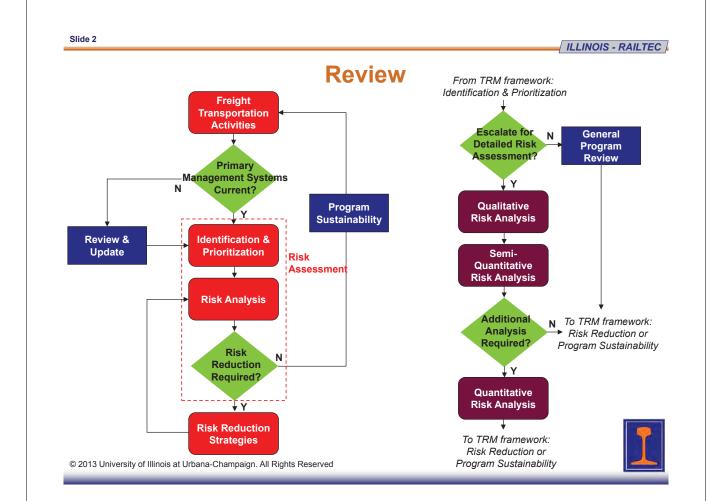
In-Class Group Discussion

- Identify data requirements and potential data sources or data collection processes to perform quantitative risk analysis to address the selected transportation activity from the previous in-class group discussion
 - Likelihood estimates to consider?
 - Consequence estimates to consider?
 - Existing data sources?
 - New data collection or survey?

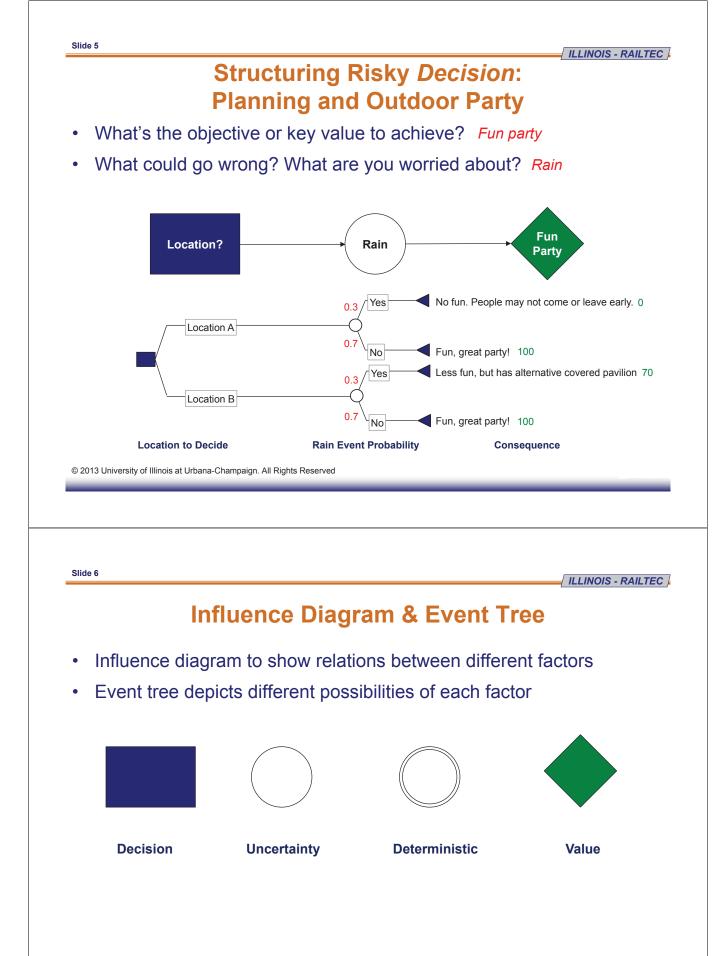
STRUCTURING RISK DECISION PROBLEM

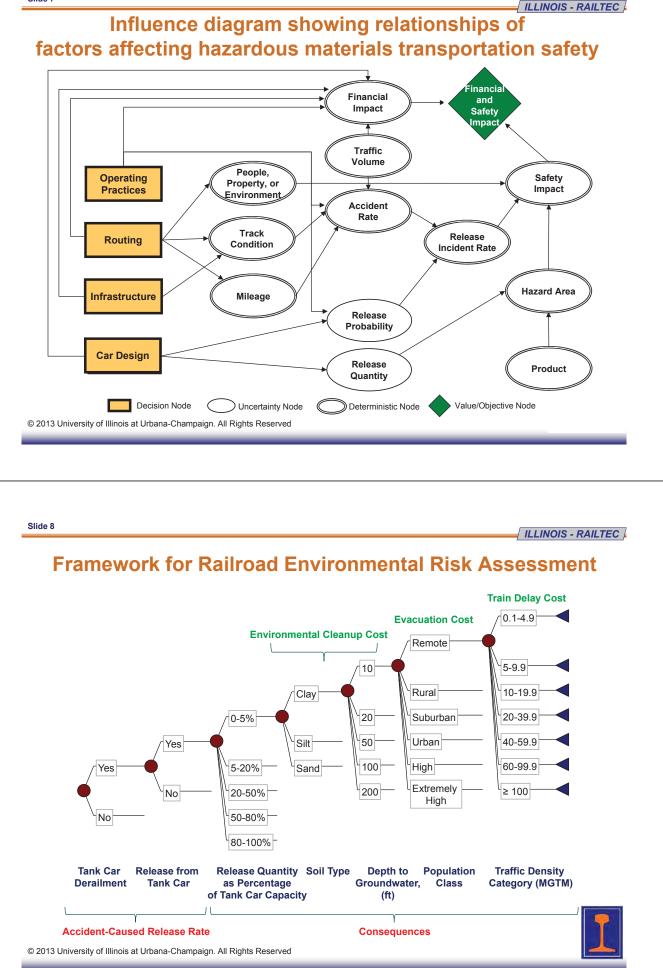

CEE498 TSR -Transportation Safety and Risk

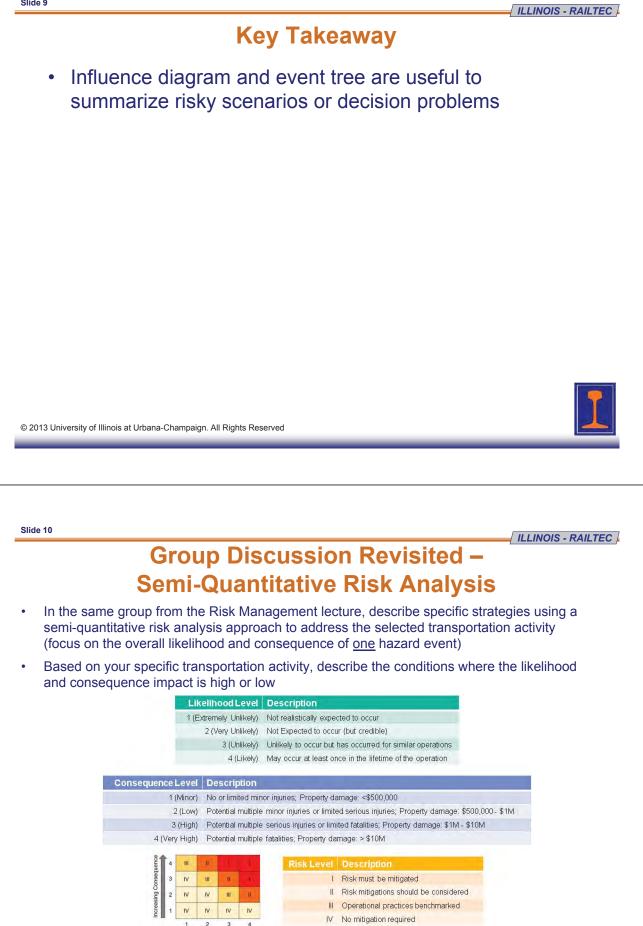
Dr. Rapik Saat, Ph.D.

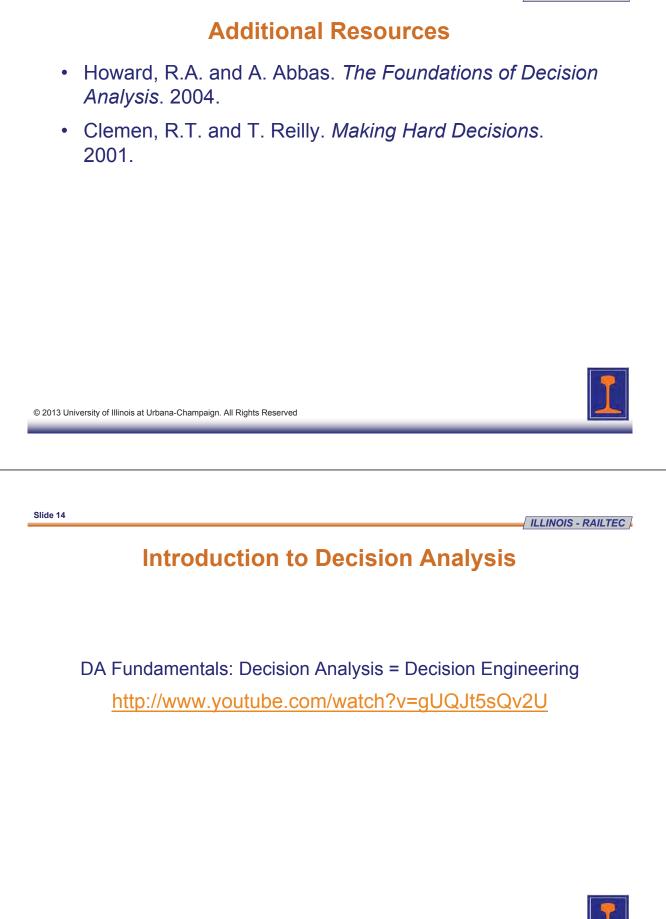

Rail Transportation and Engineering Center – RailTEC

Department of Civil & Environmental Engineering


University of Illinois at Urbana-Champaign, U.S.A.






ILLINOIS - RAILTEC

Increasing Likelihood

Slide 11 ILLINOIS - RAILTEC **Group Discussion Revisited – Quantitative Risk Analysis** Identify data requirements and potential data sources or • data collection processes to perform quantitative risk analysis to address the selected transportation activity from the previous in-class group discussion - Likelihood estimates to consider? - Consequence estimates to consider? - Existing data sources? - New data collection or survey? © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved Slide 12 ILLINOIS - RAILTEC **Group Discussion Extension** In the same group from the • lecture, develop an influence diagram and event tree for the selected transportation activity - Identify one decision Fun, great partyl 100 ss fun, but has alternat Prioritize and show key Fun, creat partyl 100 risk factors Location to Decide Rain Event Prob

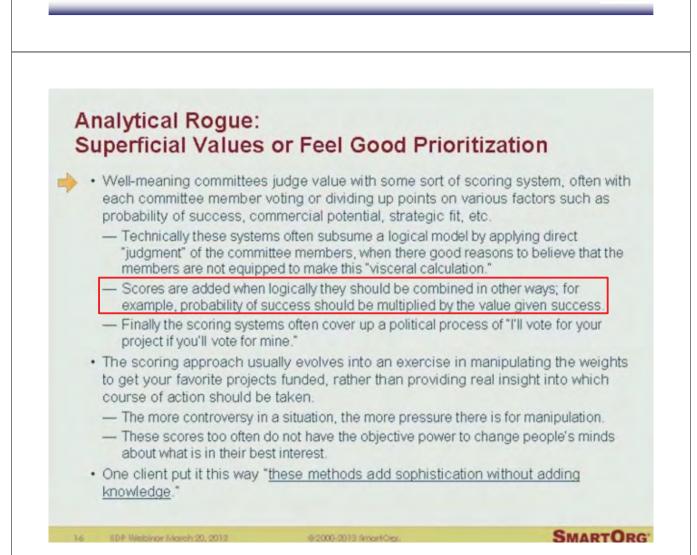
 $\ensuremath{\mathbb{C}}$ 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

Waterway

Intermoda

OVERVIEW OF HAZARDOUS MATERIALS TRANSPORTATION

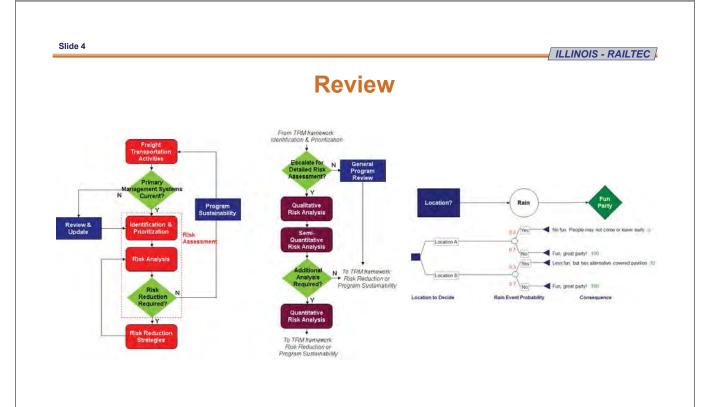
Truck


CEE498 TSR -Transportation Safety and Risk

Dr. Rapik Saat, Ph.D. Rail Transportation and Engineering

Center – RailTEC

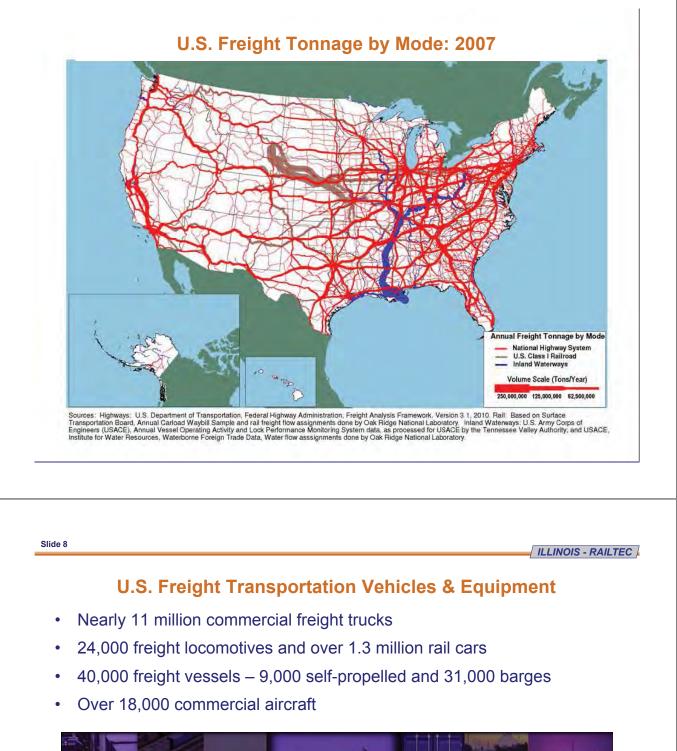
Department of Civil & Environmental Engineering


University of Illinois at Urbana-Champaign, U.S.A.

Semi-Quantitative Transportation Risk Analysis Methodology – Risk Index

• A single number or a tabulation of numbers correlated to the risk level

	P	roduct		Mode		alitative Ranking		Act	ion	
	С	hlorine		Rail		High		Esca	alate	
		Coal		Barge		Low	S	Scree	en out	
	С	hlorine		Truck		High		Esca	alate	
	Aqu	ieous HCI	h	ntermodal	Ν	/ledium	В	ench	nmark	
		А	\cap	В	\cap	С	٢	٦	D	A×B×C×D
Product - Moc	de	Frequenc of Shipment		Historical Incidents		Hazard Rating			pulation Along Route	RISK INDEX
Chlorine – Ra	il	6		2		10			5	600
Coal - Barge		5		2		1			1	10
Chlorine - Truc	ck	6		5		10			6	1,800
Aqueous HCI Intermodal	-	4		6		4			5	480



Learning Outcomes At the end of this lecture students will be able to: 1. Recognize the extent of freight transportation infrastructure in the U.S. 2. Identify the major types of hazardous commodities that are moved and how various transport modes are utilized in this regard Recognize US federal hazardous materials transportation regulations 4. Recognize the economic considerations that affect the transport of hazardous materials Describe the supply chain for hazardous materials © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved Slide 6 ILLINOIS - RAILTEC **U.S. Freight Transportation Infrastructure** Roads Over 4 million miles of public roads 164,000 miles of roads comprising the National Highway System, including over 47.000 miles of Interstates

- Rail
 - Over 250,000 miles of track, including yards, sidings and parallel lines
 - Nearly 95,000 miles of Class I railroad track
- Waterway
 - Over 13,000 miles of inland waterways, including rivers and Great Lakes
 - Nearly 300 major commercial ports
- Pipeline
 - Roughly 1.7 million miles of oil and gas pipelines
- Air
 - Over 13,000 airports

Sources: FHWA Freight Facts and Figures 2011, North American Transportation Statistics Database © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

Sources: FHWA Freight Facts and Figures 2011, North American Transportation Statistics Database © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

What Is A Hazardous Material?

• A substance or material that poses an unreasonable risk to health, safety, or property when it's transported, used incorrectly, or not properly stored or contained

Source: U.S. DOT Pipelines and Hazardous Materials Safety Administration (PHMSA)

© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

Slide 10

ILLINOIS - RAILTEC

PHMSA Hazmat Classification System

Class 1: Explosives

- 1.1 Mass explosion hazard
- 1.2 Blast/projection hazard
- 1.3 Predominately a fire hazard
- 1.4 No significant blast hazard
- 1.5 Very insensitive explosives; blasting agents
- 1.6 Extremely insensitive detonating substances

Class 2: Gases

- 2.1 Flammable
- 2.2 Non-Flammable
- 2.3 Poisonous
- **Class 3: Flammable Liquids**

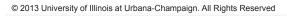
- Class 4: Flammable Solids
 - 4.1 Flammable solids
 - 4.2 Spontaneously combustible
 - 4.3 Dangerous when wet
- Class 5: Oxidizing Agents & Organic Peroxides
 - 5.1 Oxidizing agents
 - 5.2 Organic peroxides
- Class 6: Toxic & Infectious Substances
 - 6.1 Poisonous materials
 - 6.2 Etiologic (infectious) materials
- Class 7: Radioactive Substances
- **Class 8: Corrosive Substances**
- **Class 9: Miscellaneous**

Hazardous Materials and Societal Needs

- More than 70,000 chemicals are used regularly around the world
- They are used to produce almost everything we use
- Some of these hazardous materials are finished products while others are used as ingredients in producing these products

© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

Slide 12


ILLINOIS - RAILTEC

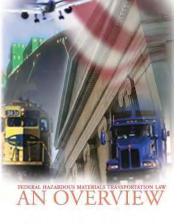
Sample Products Made From Hazardous Materials

- Building insulation
- Automobile parts
- Compact fluorescent bulbs
- Coolant systems
- Plastic packaging
- Solar panels
- Batteries
- Diesel additives
- Detergents
- Paper

- Air filters
- Oil spill absorbents, booms and skimmers
- Drugs and vaccines
- Medical devices
- Fertilizers
- Safe drinking water
- Athletic gear
- Computer parts

Source: American Chemistry Council

Hazardous Materials Transportation Modes


US DOT Hazardous Materials Regulations (HMR)

49 CFR 171 through 180

- 171 General information, regulations, and definitions
- 172 Hazardous materials table, special provisions, hazmat communications, emergency response, training
- 173 Shippers and packaging
- 174 Carriage by rail
- 175 Carriage by aircraft
- 176 Carriage by vessel
- 177 Carriage by public highway
- 178 Specs for packaging
- 179 Specs for tank cars
- 180 Continuing qualification and maintenance of packagings

Source: http://hazmat.dot.gov

© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

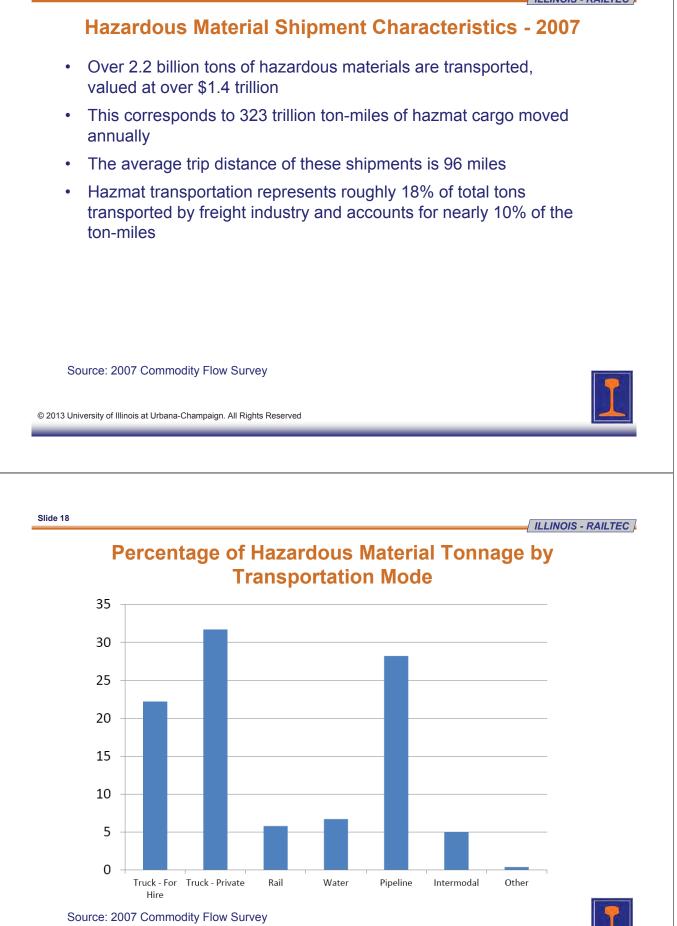
FEDERAL

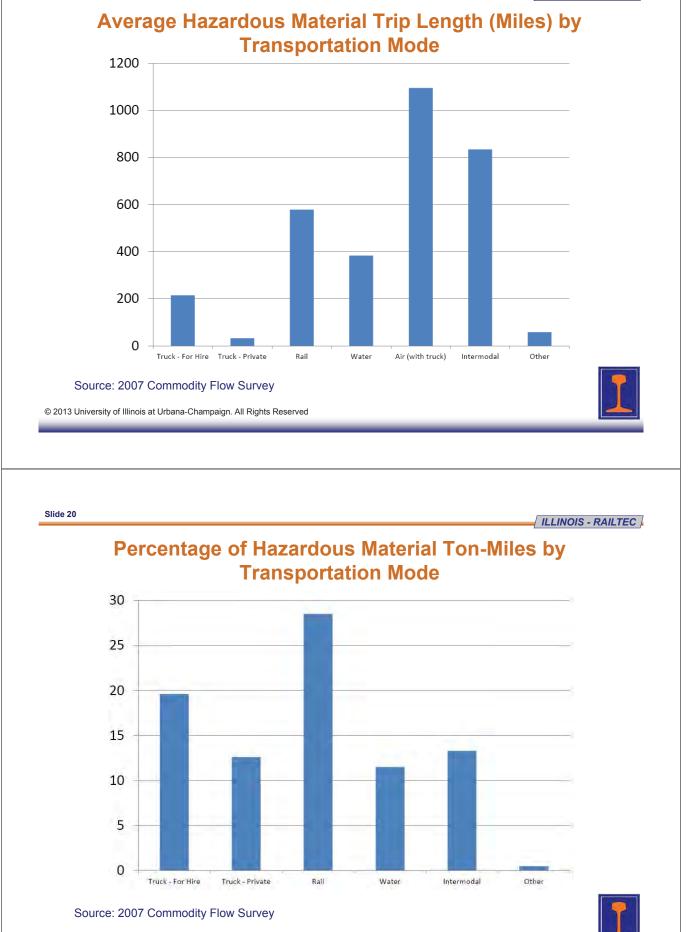
HAZMAT LAW

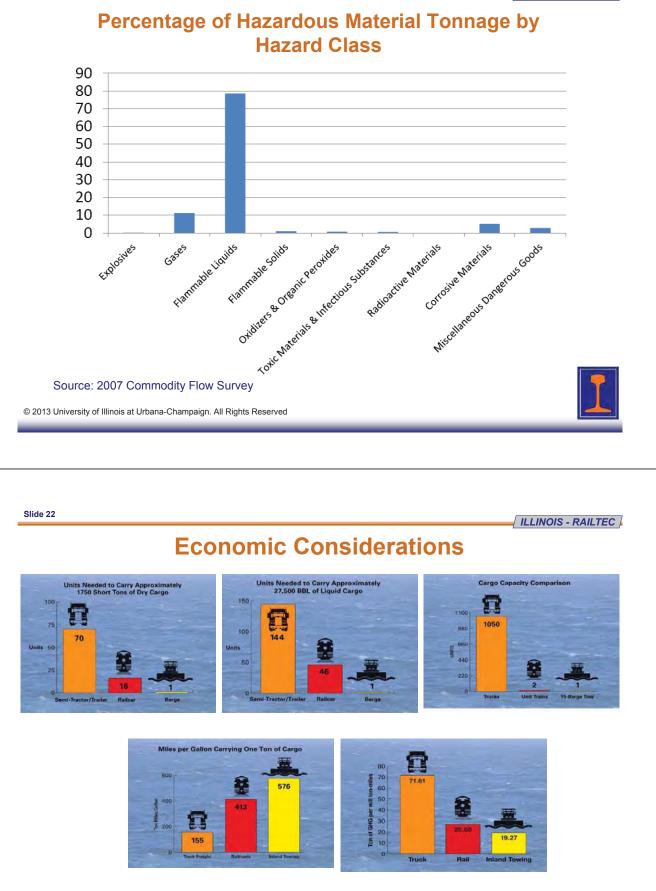
Slide 16

ILLINOIS - RAILTEC

US DOT Hazardous Materials Regulations (HMR)

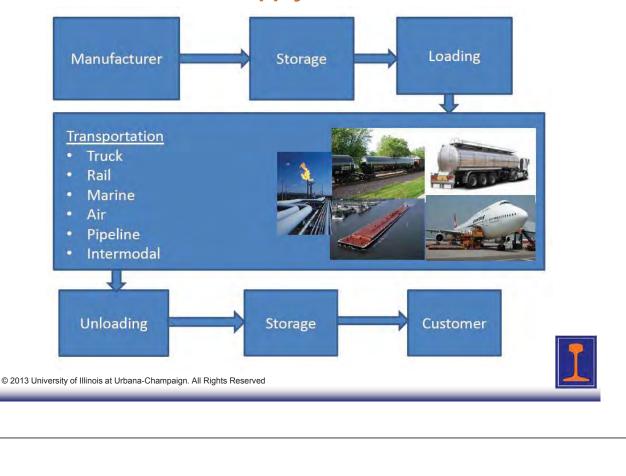

The HMR are designed to achieve four goals:




Source: US DOT Pipeline and Hazardous Material Safety Administration, Transportation of Hazardous Materials, 2009-2010.

Ţ

 $\textcircled{\sc c}$ 2013 University of Illinois at Urbana-Champaign. All Rights Reserved



Source: C. James Kreese, et al., A Modal Comparison of Domestic Freight Transportation Effects on the General Public, Texas Transportation Institute, Texas A & M University System, December 2007

Generalized Supply Chain Flow Chart

Slide 24

ILLINOIS - RAILTEC

Hypothetical Shipment: Supply Chain Roles

Petrochemicals are shipped via rail from a chemical plant in Houston, Texas, to a manufacturer in Philadelphia. The finished product, also considered a hazardous material, is then transported by truck to the Port of New York for ocean shipping to Europe.

Hypothetical Shipment: Supply Chain Roles

- Chemical Plant
 - Prepare shipping documents
 - Load commodity using approved procedures by certified employees
 - Maintain an emergency response plan

Railroad

- Accept shipping documents and prepare additional documents as required
- Inspect cars prior to loading
- Inspect cars after loading
- Provide appropriate placards
- Place car within the train in an approved configuration
- Inspect car before moving

© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

Slide 26

ILLINOIS - RAILTEC

Hypothetical Shipment: Supply Chain Roles

Railroad (continued)

- Maintain shipping documents
- Maintain emergency response information
- Transport to interchange with another railroad
- Inspect car at interchange
- Transfer shipping documents to second carrier
- Second railroad places car in appropriate position within train
- Deliver to manufacturer

Manufacturer (Incoming)

- Accept car and inspect
- Accept shipping papers
- Unload car
- Store commodities in approved manner

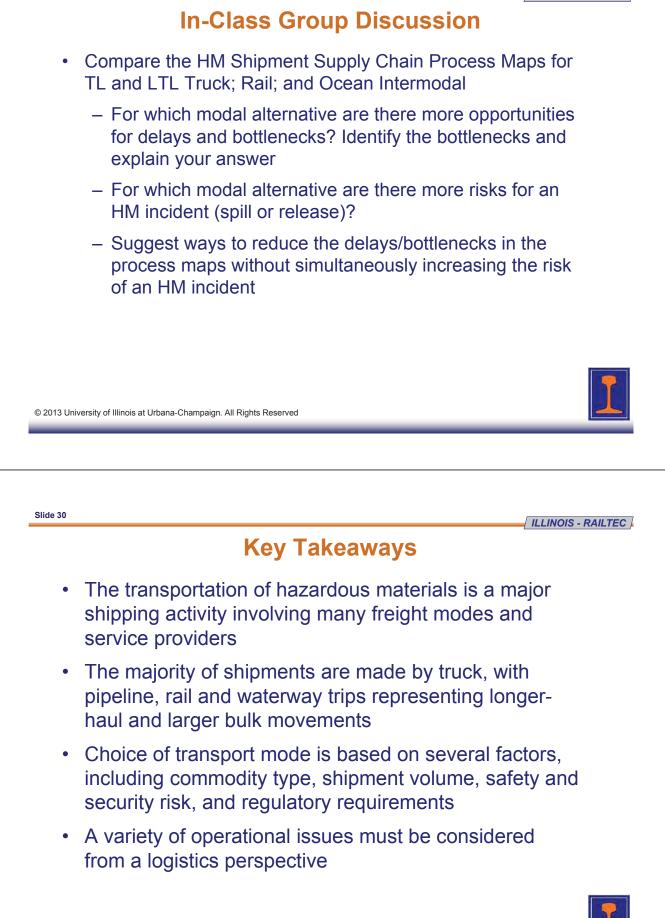
Hypothetical Shipment: Supply Chain Roles

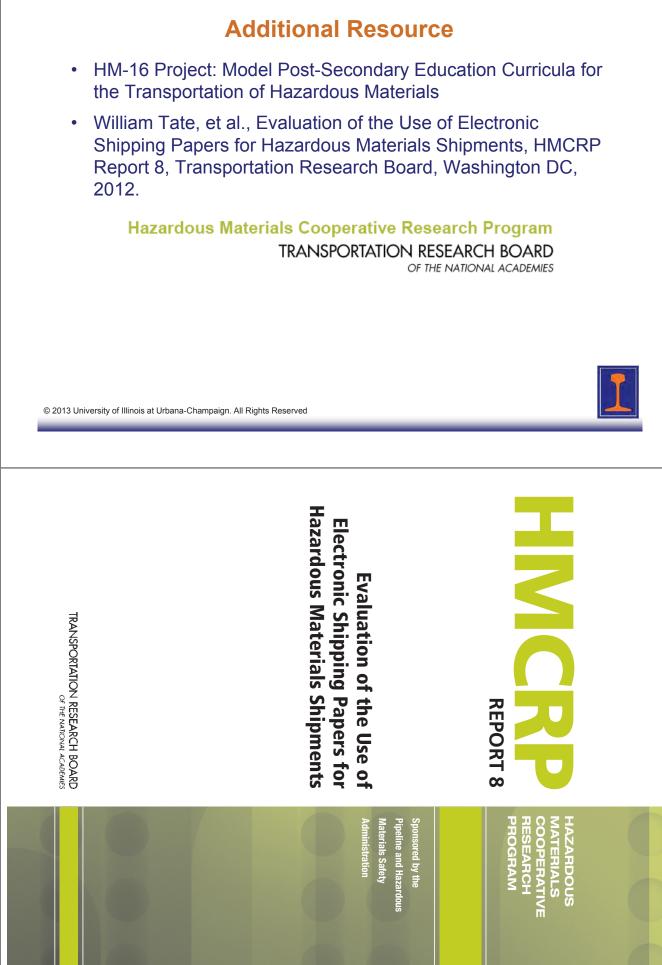
Manufacturer (Outgoing)

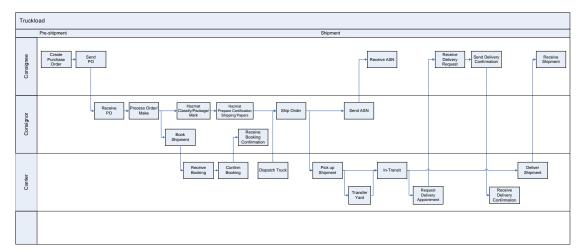
- Prepare appropriate shipping documents

- Load truck
- Trucking Firm
 - Accept and maintain shipping documents
 - Inspect load
 - Provide appropriate placards
 - Transport load
- Port Facility
 - Accept load and shipping documents
 - Store in appropriate location
 - Prepare additional required shipping documentation for overseas shipping
 - Move to ship

 $\ensuremath{\textcircled{\sc 0}}$ 2013 University of Illinois at Urbana-Champaign. All Rights Reserved


Slide 28


ILLINOIS - RAILTEC


Hazardous Materials Shipment Supply Chain Process Maps

See handout

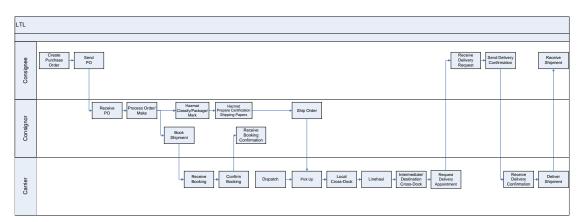


Figure 2. Less-than-truckload process map.

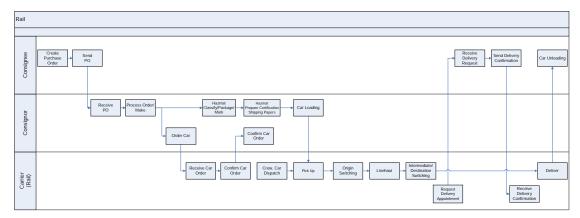
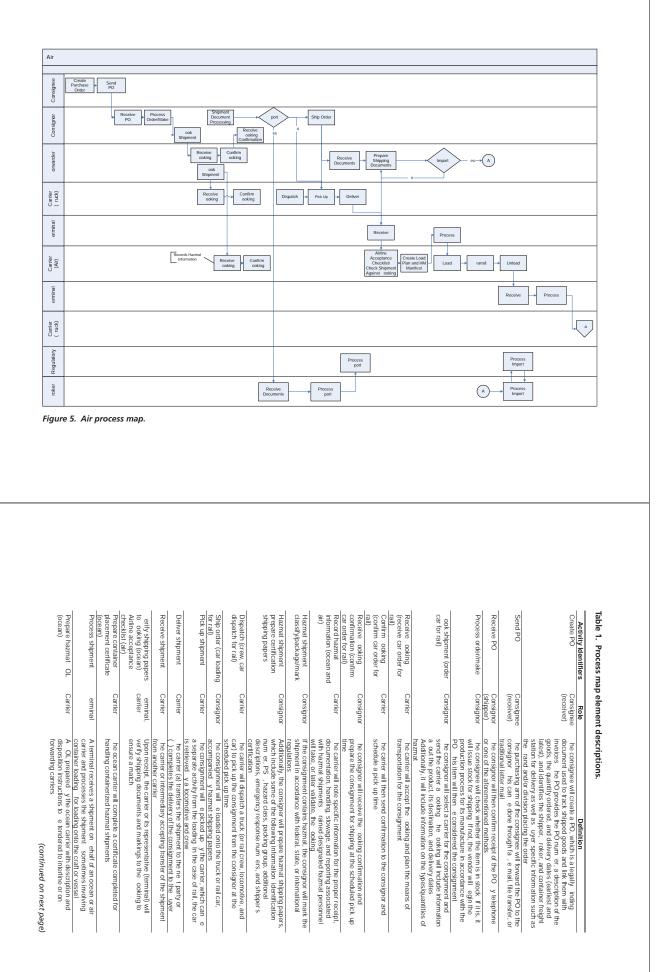



Figure 3. Rail process map.

Ocean/Inte	ermodal
Consignee	Create Purchase Older
Cansignor	Receive Process Onder Pool Kake Pool Classification Process Context Pool Classification Process Context Pool Classification Process Support Process Support Process Support Process Control Classification Pool Classification
Carrier (Ocean)	Receive Confirm outring Prepare Prepare Prepare Prepare Prepare Prepare Aumation Prepare Aumation Prepare Prepare Prepare Prepare Aumation Aumation<
Carrier (ruck)	Receive coking Colory Dispatch Pick Up Colory Dispatch Colory Co
erminal (Origin)	Receive ooking Confirm Receive Process Container
erminal (Destination)	Unload Container
Carrier (Rail)	Receive Hazmati OL Hazmati OL
Carrier (ruck)	Receive Hazmat: OL
Regulatory	Process pot
roker	Receive port Process import

Figure 4. Ocean intermodal process map.

<u>3</u>

Table 1. (Continued)

appointment with the shipper best of the shipper will then ensure that the consignment is delivered at the correct pace and time the correct pairs the shipment to the ne t party or () completes the delivery of the consignment to the vert	Carrier	confirmation Receive delivery confirmation Deliver shipment
As the shipment is nearing the consignees delivery point, the shipper will request a delivery appointment Upon receiving of the delivery request, the consignee will continue preparations for the receipt of the consignment If the consignee is ready for delivery. It will confirm the delivery If the consignees is ready for delivery.	Carrier Consignee Consignee	Request delivery appointment Receive delivery request Send delivery
Receipt y the USC of the CDC	Regulatory	ocean) Receive USC CDC notification
documentation for e port he process of sur mitting and clearing consignment	regulatory roker,	Process import (air,
A customs house roker receipt of documents necessary to su mit to the customs authority for e port or import clearance	roker	(air, ocean)
onto out ound trucks with little or no storage in etween Rail car switching from line haul trains for local delivery or for transfer to other lines or interlining rail carriers		Intermediate/destination switching (rail)
Intermediate or destination terminal unloading of consignments from an incoming truck and loading these consignments directly	Carrier	Intermediate/destination cross dock (L_L)
he primary movement of the consignment from the point of origin or transfer to the point of destination or transfer hen more than one carrier, vehicle, or driver as throubed, this does not typically include the pickup and delivery of the shipment or ocean and all shipments, this refers to the port to port movement.	Carrier	In transit or line haul
Process of moving containers on or off ships or rail cars	erminal, carrier	Load, unload container (rail, ocean)
A different driver or interlined carrier may e used from the one that made the pickup he transfer of the trailer occurs at the transfer yard	Carrier	ransfer yard (L)
itching from local to line haul tra	Carrier	Origin switching (rail)
Unloading consignments from an incoming truck or rail car and loading these consignments directly only out aund trucks with little or no storage in enween his may e done to change type of conveyance, to soft material intended for different destinations, or to com line material from different rights into transport vehicles (or containers) with the same, or smilar, destinations.	Carrier	Local cross dock (L L)
he AS will e used to prepare for receipt and processing of the shipment	Consignee, carrier	Receive AS
Pu lishing the AS is a key point in the delivery of the consignment his message contains key information such gross weight and delivery taleat/lime that lidentifies the goods eing shipped and their quantity, style, size, and color	Consignor	Send advance shipping notification (AS)
Similar to the ocean carrier slowage plan, the air carrier will create a bad plan and create a harman transfirst that descri es the location, description, and quantity of all items on the aircraft he plot will carry a copy (sometimes a reviated) of the harmat manifest	Carrier	Create load plan and hazmat manifest (air)
he USC requires pre arrival notification of CDCs under C R CDC listing is not a comprehensive list of all hazmat liems	Carrier	Prepare U S Coast uard (USC) certain dangerous cargo (CDC) notification
A vessel stowage plan prepared y the ocean carrier that identifies the location of all hazmat on oard the vessel will include description and quantity of each item as well	Carrier	Prepare hazmat stowage plan (ocean)
Definition Receipt of the hazmat OL y the interline or on forwarding carrier	Carrier	Activity identifiers Receive hazmat ill of lading (ocean)

Slide 1

ILLINOIS - RAILTEC

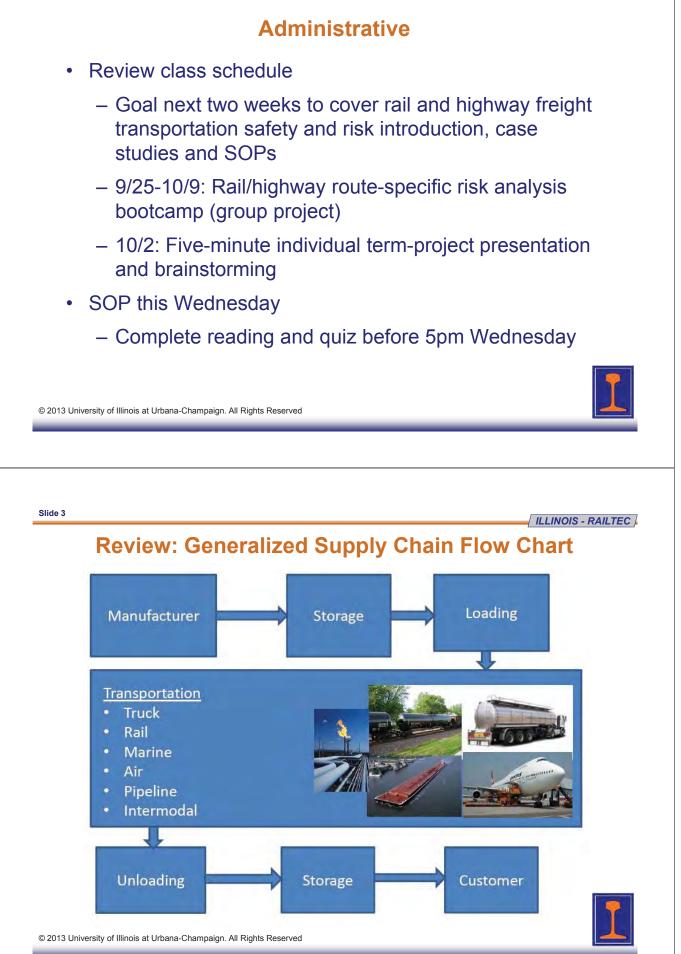
OVERVIEW OF RAILROAD FREIGHT TRANSPORTATION SAFETY

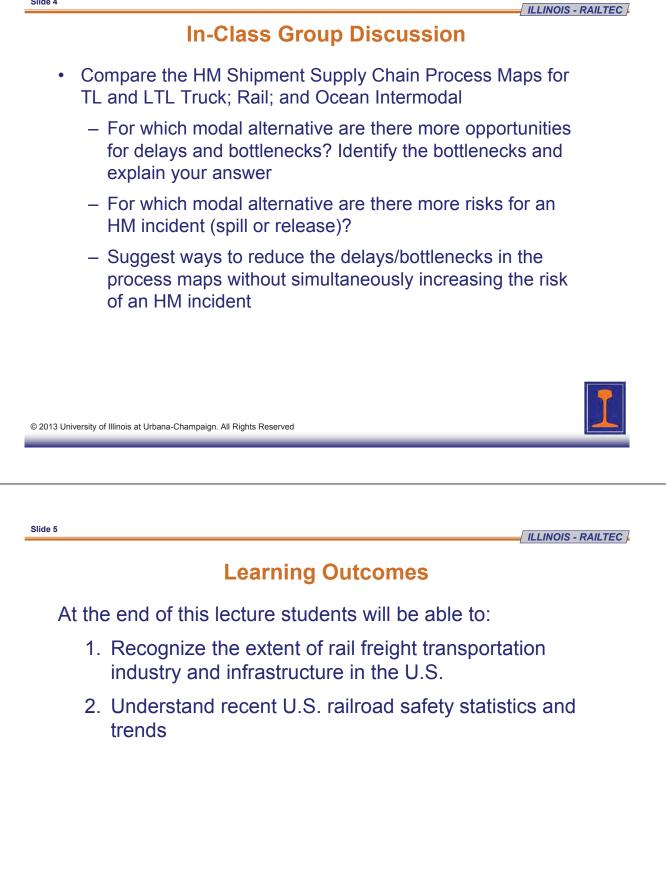
CEE498 TSR -Transportation Safety and Risk

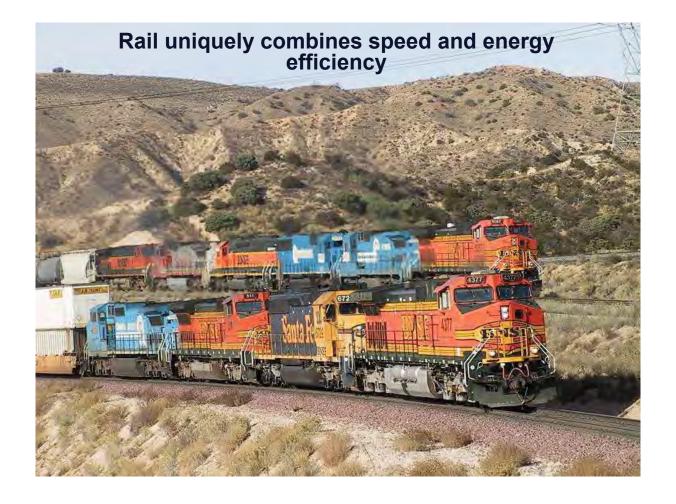
Dr. Rapik Saat, Ph.D.

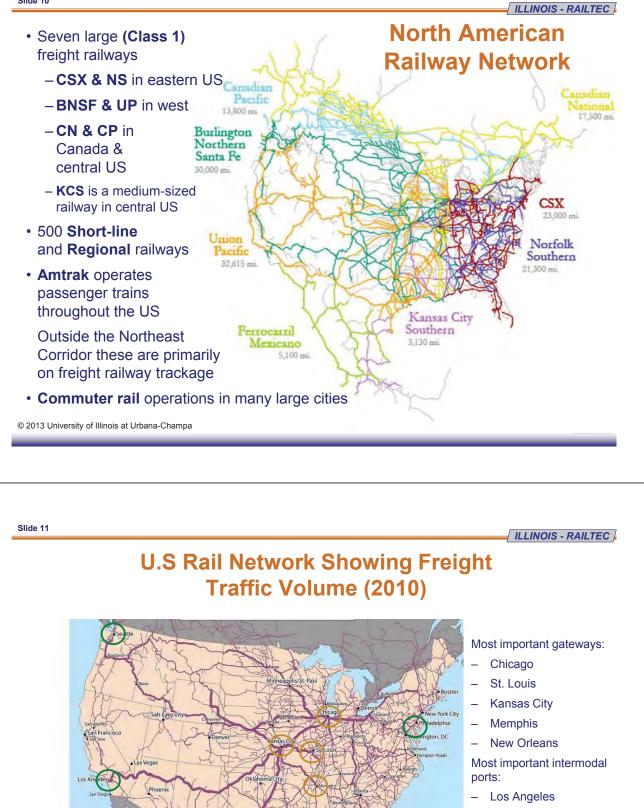
Rail Transportation and Engineering Center – RailTEC

Department of Civil & Environmental Engineering


University of Illinois at Urbana-Champaign, U.S.A.



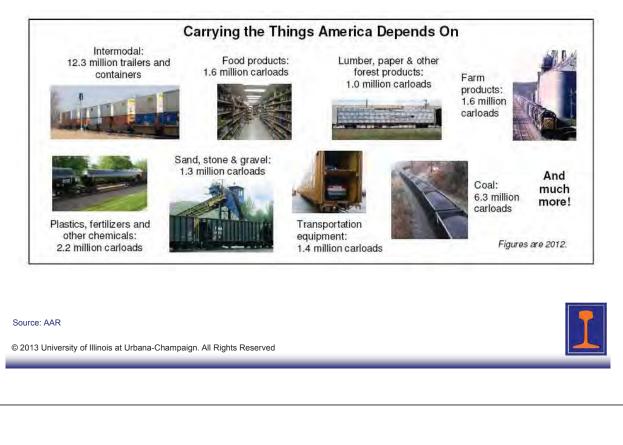




Slide 8

U.S. Rail Freight Transportation Industry

	The	U.S. Freigh	nt Railroad Ir	dustry: 2011	Freight	
	Type of Railroad	Number	Miles Operated*	Employees	Revenue (\$ billions)	
	Class I	7	95,387	158,623	\$65.0	
	Non-Class I	561	43,188	17,317	4.0	
	Total	568	138,575	175,940	\$68.9	
	*Excludes trackage	e rights. Sourc	e: AAR			
© 2013 Univer	rsity of Illinois at Urbana-Champai	ign. All Rights Reserve	ed			
Slide 9		Major ((Class 1) I	Railways	ILLINOI	S - RAILTEC
Slide 9		Major (Canadi Pacific Railway	AN	Railways		S - RAILTEC
Slide 9	BN:	CANADI. Pacific	AN			5
Slide 9	BN:	CANADI PACIFIC RAILWAY	AN		J	S RN®
Slide 9		CANADI PACIFIC RAILWAY	AN		J SNA K SOUTHE	S RN®


- Houston
- Baltimore
- Seattle

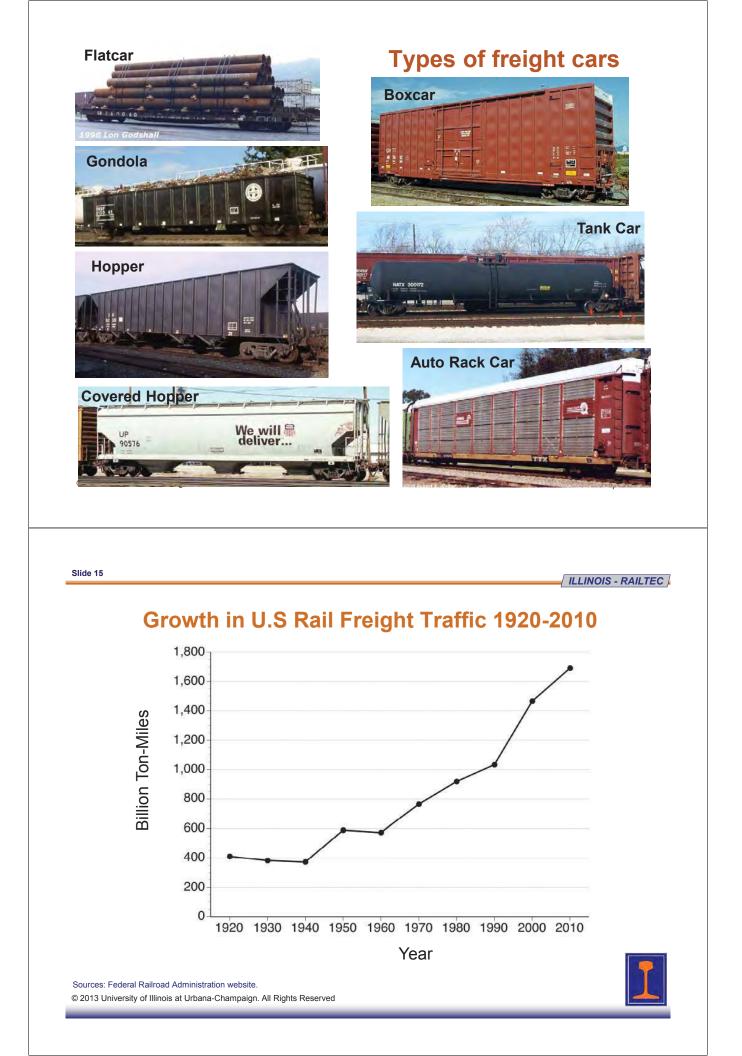
LEGEND Major Cities All Commodities - Net Tons < 10,000,000 10,000,001 - 50,000,000 Most important gateways 50,000,001 - 100,000,0 O Most important intermodal ports >100,000,001

Source:FRA. Office of Railroad Policy and Development, based on Surface Transportation Board's 2010 Carload Waybill Sample Intermodal Terminals Database; D. P. Minddendorf for the Bureau of Transportation Statistics U.S. D.O.T. © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

Commodities Transported by Rail (2012)

Slide 13

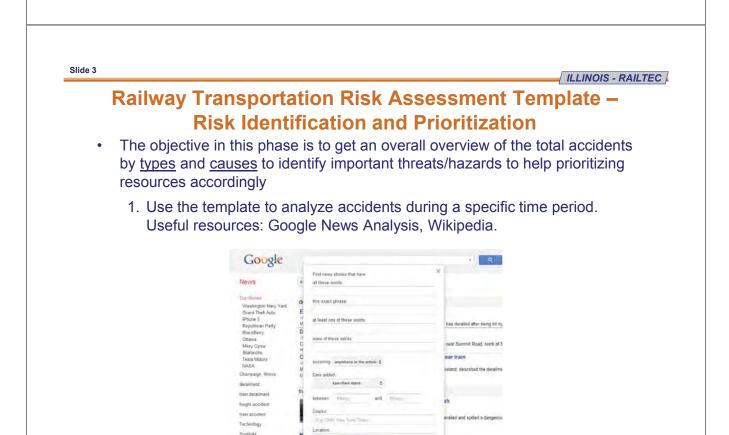
ILLINOIS - RAILTEC


Tonnage and Revenue of Commodities Transported by Rail (2012)

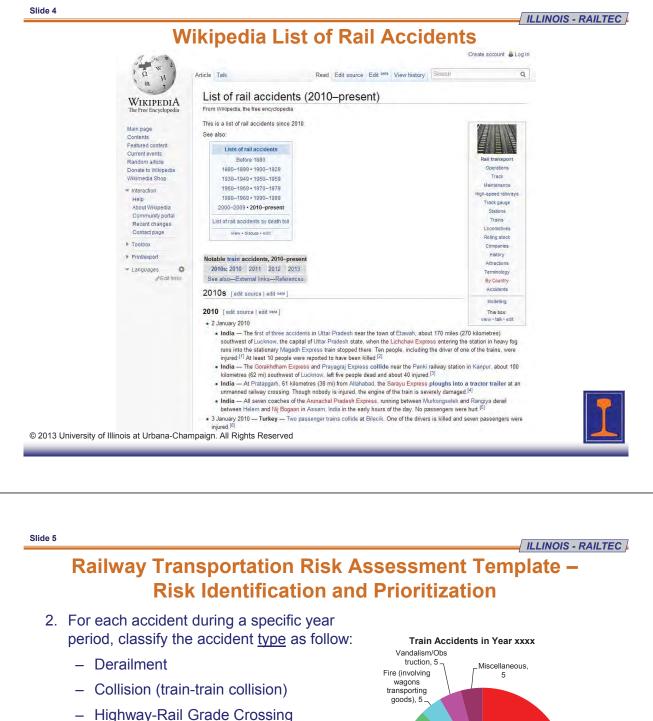
	Tons Ori	ginated	Gross R	evenue**
Commodity Group	(000)	% of Total	(million)	% of Total
Coal	727,094	40.2 %	\$14,717	21.6 %
Chemicals & allied prod.	189,263	10.5	9,216	13.5
Farm products	143,537	7.9	5,309	7.8
Non-metallic minerals	132,169	7.3	2,646	3.9
Misc. mixed shipments*	115,399	6.4	8,803	12.9
Food & kindred products	107,734	6.0	5,413	8.0
Metallic ores	75,352	4.2	748	1.1
Metals & products	51,533	2.9	2,730	4.0
Petroleum & coke	45,232	2.5	2,289	3.4
Stone, clay & glass prod.	43,921	2.4	1,725	2.5
Waste & scrap materials	42,568	2.4	1,284	1.9
Pulp, paper & allied prod.	32,077	1.8	2,181	3.2
Lumber & wood products	27,203	1.5	1,582	2.3
Motor vehicles & equip.	22,848	1.3	4,877	7.2
All other commodities	50,683	2.8	4,546	6.7
Total	1,806,613	100.0 %	\$68,067	100.0 %

*Miscellaneous mixed shipments is almost all intermodal traffic. Some intermodal traffic is also included in commodity-specific categories. ** Gross Revenue is not adjusted for absorption (incentive rebates etc.) or correction.

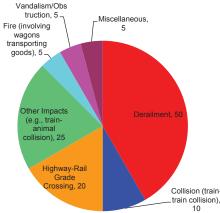
Source: AAR Class I Railroad Statistics, April 2013. © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

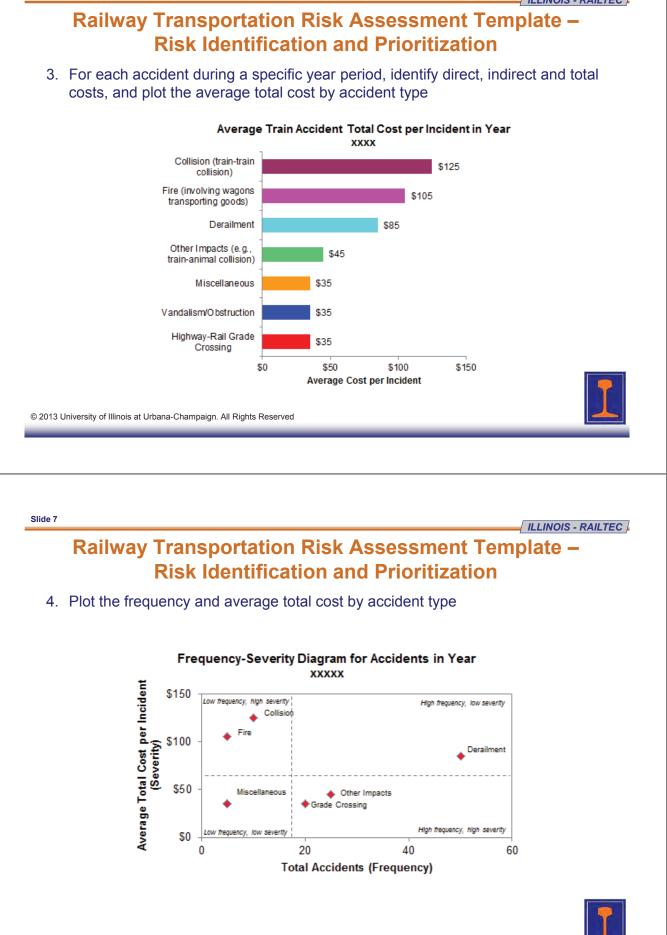

Key Takeaways · Rail transportation plays a major role in freight transportation · Railroads have continued to improve safety significantly over the last decade. The most troubling railroad safety problems arise from factors largely outside railroad control. © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved Slide 1 ILLINOIS - RAILTEC **RAILWAY TRANSPORTATION RISK ASSESSMENT TEMPLATE** Total Cost **CEE498 TSR - Transportation Safety and Risk** Dr. Rapik Saat, Ph.D. **Rail Transportation and Engineering Center – RailTEC** y Diagram for **Department of Civil & Environmental** neidare \$150 Der Engineering \$100 Total Cost University of Illinois at Urbana-Champaign, U.S.A. Total Accidents (Frequency)

Learning Outcomes


At the end of this lecture students will be able to:

- 1. Perform data collection process and basic data analysis of historical railroad accidents
- 2. Identify various data for transportation risk analysis


 $\ensuremath{\mathbb{C}}$ 2013 University of Illinois at Urbana-Champaign. All Rights Reserved


H Canyon, just west of Arvada

- Other Impacts (e.g., train-animal collision)
- Fire (involving wagons transporting goods)
- Vandalism/Obstruction
- Miscellaneous.

ILLINOIS - RAILTEC

Railway Transportation Risk Assessment Template -**Risk Identification and Prioritization** 5. For each accident during a specific year Train Derailment Accident Cause period, identify the root cause and classify the accident cause as: Track, Roadbed and Structures - Signal and Communication ain Operatio – Human Factors, 10 Mechanical and Electrical Failures Train Operation – Human Factors Miscellaneous Causes Not Otherwise Highway-Rail Grade Crossing Accident Cause Listed Track, Roadbed and Structures, Note: For guidance to classify the accident cause, refer to the list of train accident cause codes publish by the U.S. Federal Railroad Administration (FRA). 6. Repeat cost and frequency-severity analyses © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

Slide 9

Slide 8

Miscellaneous Data Sources

ILLINOIS - RAILTEC

ILLINOIS - RAILTEC

National Transportation Atlas Databases 2013

http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national transportation atlas database/2013/index.html

Points P

_

Dams

Ports

Ports

Railroad Bridges

Public-Use Airports

Amtrak Stations

Alternative Fuels Stations

Intermodal Terminal Facilities

National inventory of navigable

Intermodal Passenger Connectivity

U.S. Border Crossings

inland waterway locks

National Bridge Inventory

National Populated Places

U.S. Army Corps of Engineers

U.S. Army Corps of Engineers

Highway-Rail Grade Crossings

Travel Monitoring Analysis System

© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

Polygon

- Bureau of the Census Urbanized Area Boundaries
 - Core Based Statistical Areas
 - The 113th Congressional Districts Boundaries
 - U.S. County Boundaries
 - U.S. County Political
 - Freight Analysis Framework Regions
 - Hydrographic Features
 - U.S. Military Installations
 - Metropolitan Planning Organization
 - Non Attainment Areas
 - National Park System Boundary Dataset
 - U.S. State Boundaries
 - U.S. State Political Boundaries

Polyline

- Freight Analysis Network
- Hazardous Material Routes
- Highway Performance Monitoring System
- National Highway Planning Network
- Railway Network
- Public Use Airport Runways
- Fixed-Guideway Transit Facilities
- U.S. Army Corps of Engineers Navigable Waterway Network

Slide 11

ILLINOIS - RAILTEC

ESRI Data & Maps

Downloadable from UIUC Webstore

- A set of ready-to-use maps and data layers, including a variety of basemap and thematic layers for the world with scale-dependent rendering and labeling and the ability to turn layers on and off.
- Over 130 pre-symbolized and pre-authored vector data layers and detailed metadata for North America, Europe, and the world.
- Updated data such as the 2010 U.S. Census datasets and new datasets including the debut of World Countries and first order World Administrative Area datasets using detailed source data from DeLorme® mapping company.

International Association of Oil and Gas Producers	
http://publications.ogp.org.uk/?committeeid=41	

Risk assessment data directory - Process release frequencies	<u>434-01</u>	2010 Mar
Risk assessment data directory - Summary	<u>434</u>	2010 Mar
Risk assessment data directory - Blowout frequencies	<u>434-02</u>	2010 Mar
Risk assessment data directory - Storage incident frequencies	<u>434-03</u>	2010 Mar
Risk assessment data directory - Riser & pipeline release frequencies	<u>434-04</u>	2010 Mar
Risk assessment data directory - Human factors in QRA	<u>434-05</u>	2010 Mar
Risk assessment data directory - Ignition probabilities	<u>434-06</u>	2010 Mar
Risk assessment data directory - Consequence modelling	<u>434-07</u>	2010 Mar
Risk assessment data directory - Mechanical lifting failures	<u>434-08</u>	2010 Mar
Risk assessment data directory - Land transport accident statistics	<u>434-09</u>	2010 Mar
Risk assessment data directory - Water transport accident statistics	<u>434-10</u>	2010 Mar
Risk assessment data directory - Aviation transport accident statistics	<u>434-11</u>	2010 Mar
Risk assessment data directory - Occupation risk	<u>434-12</u>	2010 Mar
Risk assessment data directory - Structural risk for offshore installations	<u>434-13</u>	2010 Mar
Risk assessment data directory - Vulnerability of humans	<u>434-14</u>	2010 Mar
Risk assessment data directory - Vulnerability of plant/structure	<u>434-15</u>	2010 Mar
Risk assessment data directory - Ship/installation collisions	<u>434-16</u>	2010 Mar
Risk assessment data directory - Major accidents	<u>434-17</u>	2010 Mar
Risk assessment data directory - Construction risk for offshore units	434-18	2010 Mar
Risk assessment data directory - Evacuation, escape & rescue	<u>434-19</u>	2010 Mar
Risk assessment data directory - Guide to finding and using reliability data for QRA	434-20	2010 Mar
Risk assessment data directory - Appendix 1	434-A1	2010 Mar
· · · · · · · · · · · · · · · · · · ·		

© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

Slide 13

C	DECD Statistics		
C n www.oecd-ilibrary.org/statist	G		
ILLINO	S Brought to you by the University of Illi	nois at Urbana-Champaign Library	
UNIVERSITY OF ILLINOIS AT URBANA-CHAI	MPAIGN		
OECD iLibrary	PAPERS STATISTICS FACTBOOK GLOSS	Search Tes My Account details • My Marsed List	
You are here: Home / Statistics			
Statistics Smarch statistics		Search by Country	
Sources & Methods Stati	stical Newsletter Statistics Glossary Factblog		
Databases	Key Tables	Books 😹	
OECD.Stat - extract data from across datasets	Country tables	OECD Factbook	
Energy Projections for IEA Countries	Agriculture and Food: Key Tables from OECD	African Central Government Debt Statistical	
IEA CO2 Emissions from Fuel Combustion	Development: Key Tables from OECD	Vesrbook	
Statistics.	Economics: Key Tables from OECD	CO2 Emissions from Fuel Combustion	.18
IEA Coal Information Statistics	Education Key Tables from OECD	Coal Information	
IEA Electricity Information Statistics	Employment and Labour Markets. Key Tables from	Consumption Tax Trends	
IEA Energy Prices and Taxes Statistics	OECD	Creditor Reporting System	
IEA Energy Technology RD&D Statistics	Environment Key Tables from OECD	Bevelopments in Steelmaking Capacity of Non- OECD Economies	
IEA Natural Gas Information Statistics	Finance and Investment, Key Tables from OECD	Education at a Glance	
IEA Oil Information Statistics	Health: Key Tables from DECD	Electricity Information	
IEA Renewables Information Statistics	Industry and Services: Key Tables from OECD	Energy Balances of non-OECD Countries	
IEA World Energy Statistics and Balances	Insurance and Pensions: Key Tables from OECD	Energy Balances of OECD Countries	
International Trade by Commodity Statistics	Nuclear Energy Key Tables from OECD	Energy Prices and Takes	
Main Economie Indicators	Science and Technology Key Tables from OECD	Energy Statistics of Non-OECD Countries	
Monthly StabsScs of International Trade	Social Issues: Key Tables from OEOD	Energy Statistics of OECD Countries	
OECD Agriculture Statistics	Taxation Key Tables from OECD	Entrepreneurship at a Ofance	
OECD Banking Statistics OECD Economic Outlook, Statistics and Projections	Trade: Key Tables from OECD	Beographical Distribution of Financial Flows to Developing Countries: Distoursements, Commitments, Country Indicators	
		communications, contrary marcaners	-

RAILROAD FREIGHT TRANSPORTATION RISK ASSESSMENT CASE STUDIES

© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

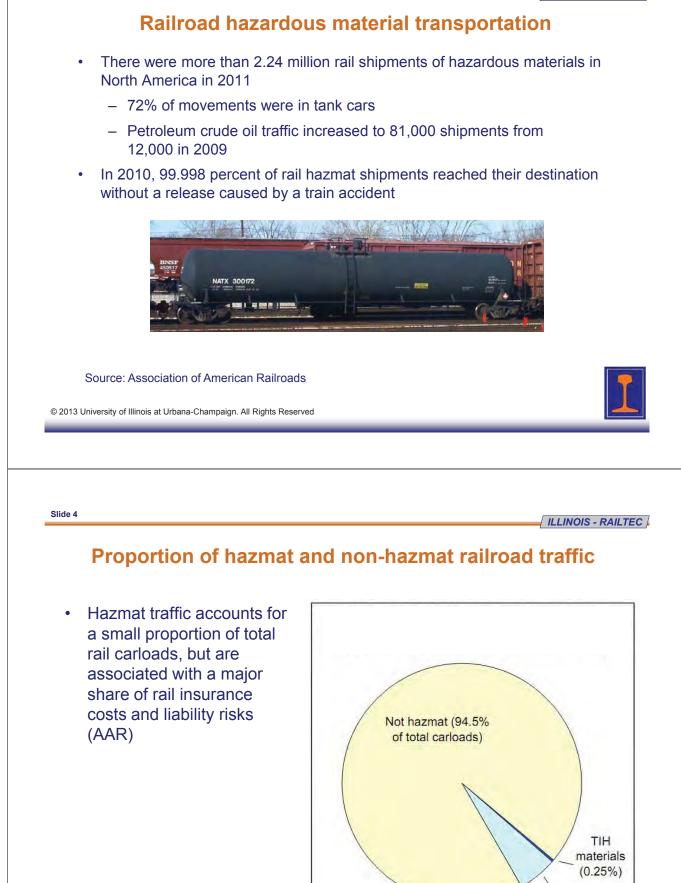
University of Illinois at Urbana-

Champaign, U.S.A.

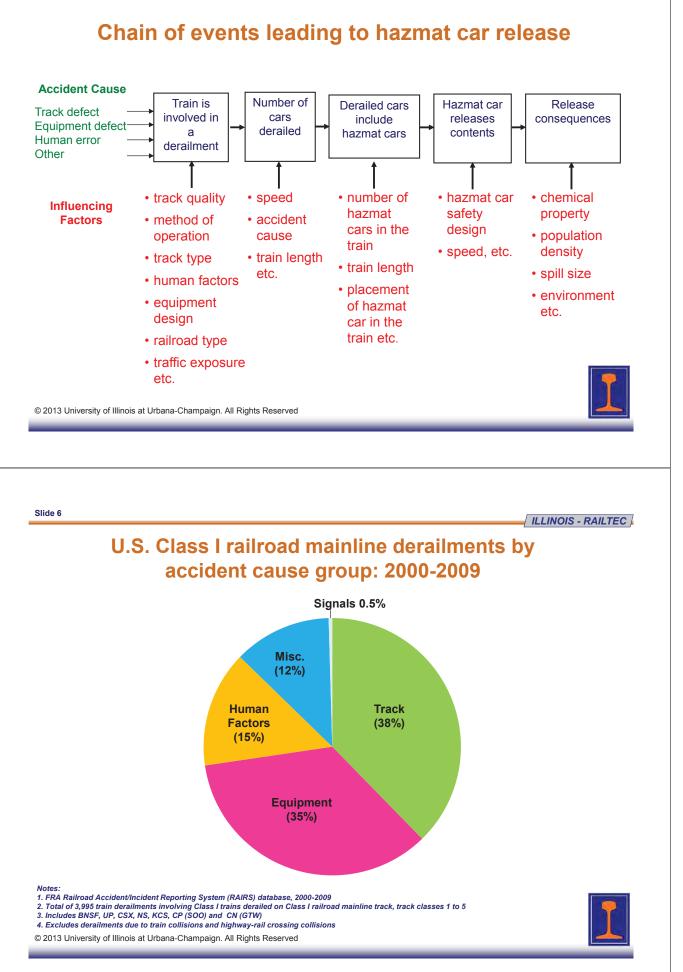
Slide 2

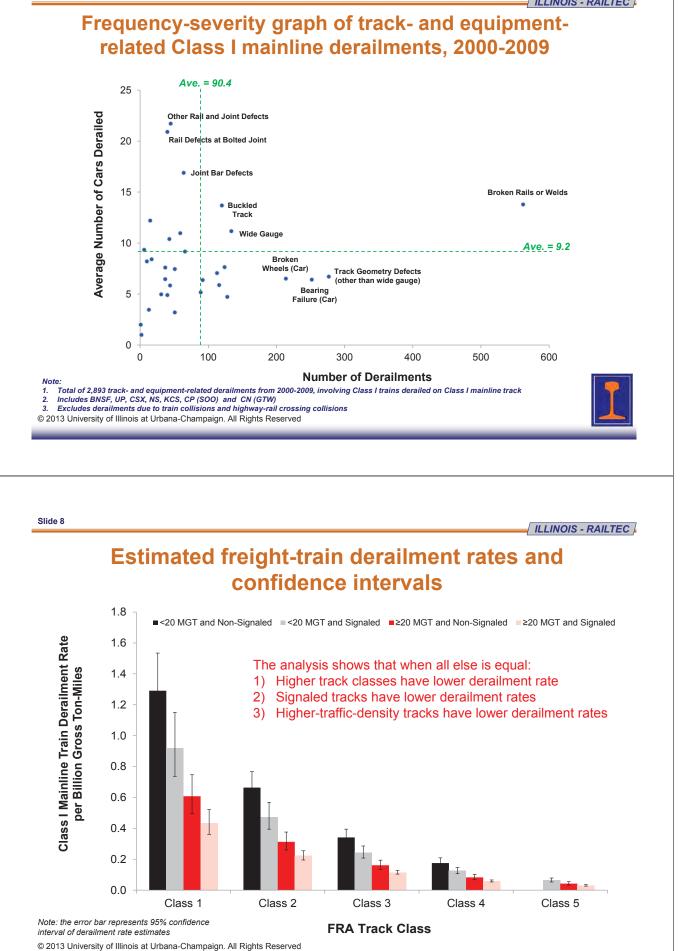
ILLINOIS - RAILTEC

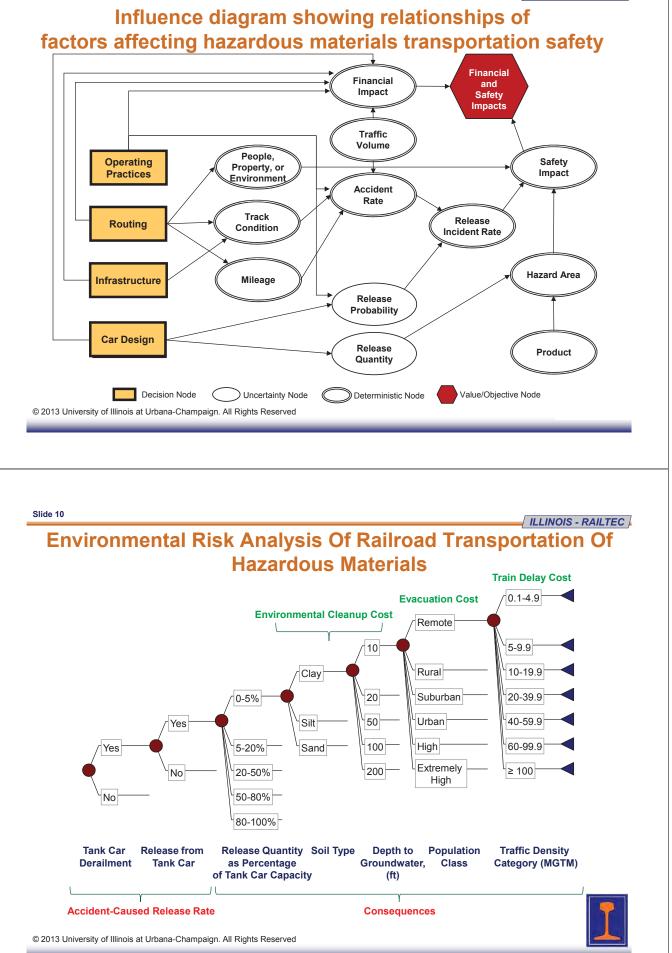
Learning Outcomes

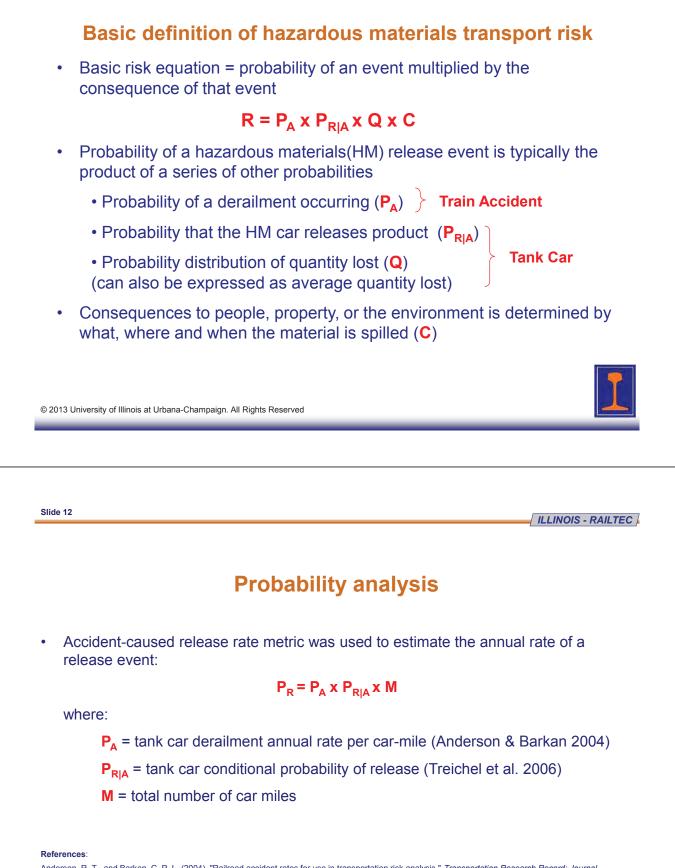

At the end of this lecture students will be able to:

- 1. Understand how to apply the basic risk concepts and tools on real case studies
- 2. Determine a suitable risk model and use it to quantify the risk associated with the transportation of a hazardous material.


Hazmat but not


TIH (5.2%)




Source: AAR analysis of

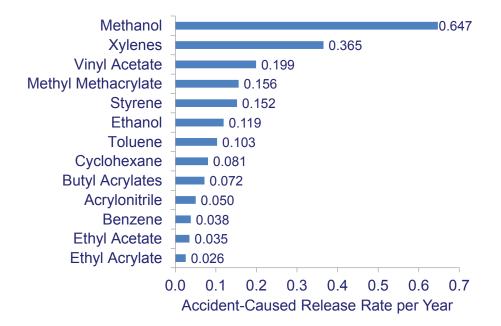
2008 STB Waybill Sample

Anderson, R. T., and Barkan, C. P. L. (2004). "Railroad accident rates for use in transportation risk analysis." *Transportation Research Record: Journal of the Transportation Research Board*, (1863), 88-98.

Treichel, T. T., Hughes, J. P., Barkan, C. P. L., Sims, R. D., Philips, E. A., and Saat, M. R. (2006). Safety Performance of Tank Cars in Accidents: Probability of Lading Loss. RSI-AAR Railroad Tank Car Safety Research and Test Project, Association of American Railroads, Washington, DC

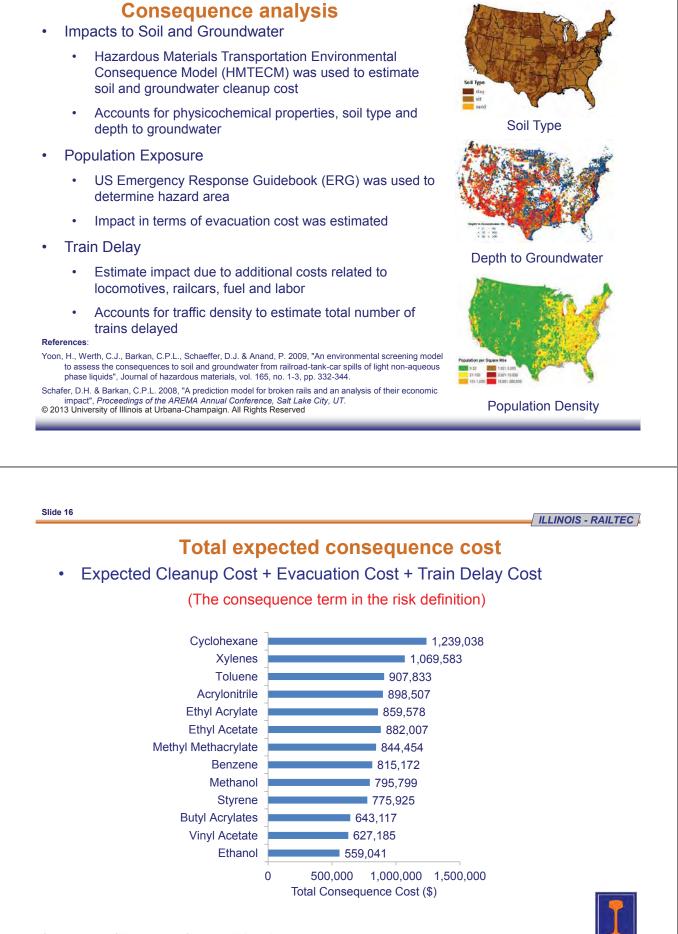
Chemicals of Interest's Routes & Annual Car Miles

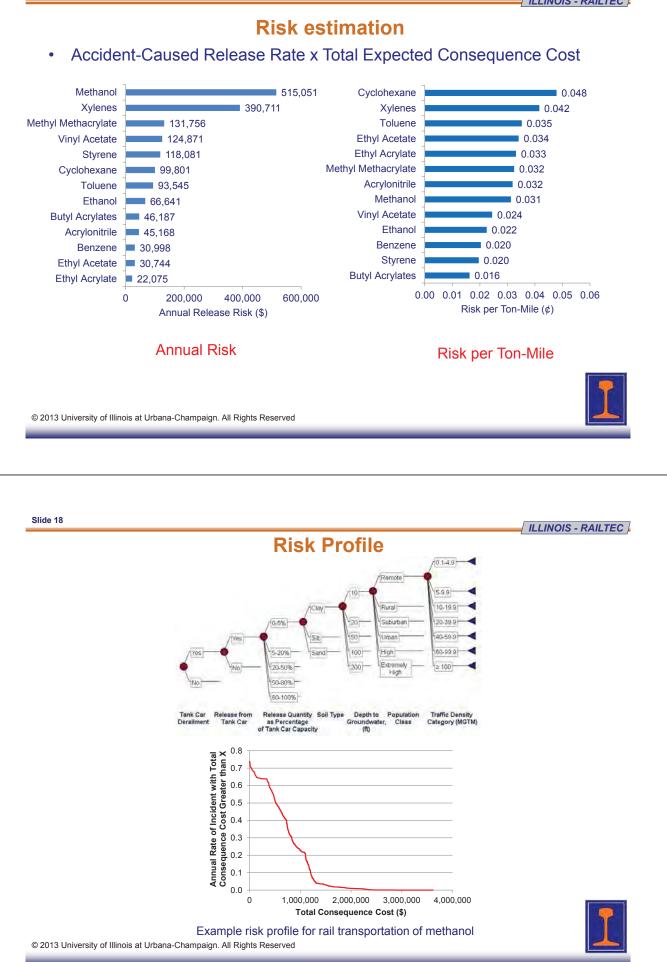
Commodity Name	Average Shipment Distance (miles)	Annual Carloads	Annual Car Miles
Acrylonitrile	486	2,892	1,406,133
Benzene	435	3,543	1,541,225
Butyl Acrylates	714	4,077	2,910,782
Cyclohexane	470	4,331	2,036,186
Ethanol	737	4,091	3,013,480
Ethyl Acetate	758	1,163	881,173
Ethyl Acrylate	564	1,151	649,216
Methanol	918	17,814	16,361,224
Methyl Methacrylate	725	5,437	3,944,250
Styrene	696	8,856	6,167,904
Toluene	810	3,216	2,604,849
Vinyl Acetate	810	6,210	5,033,087
Xylenes	928	9,950	9,234,437


© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

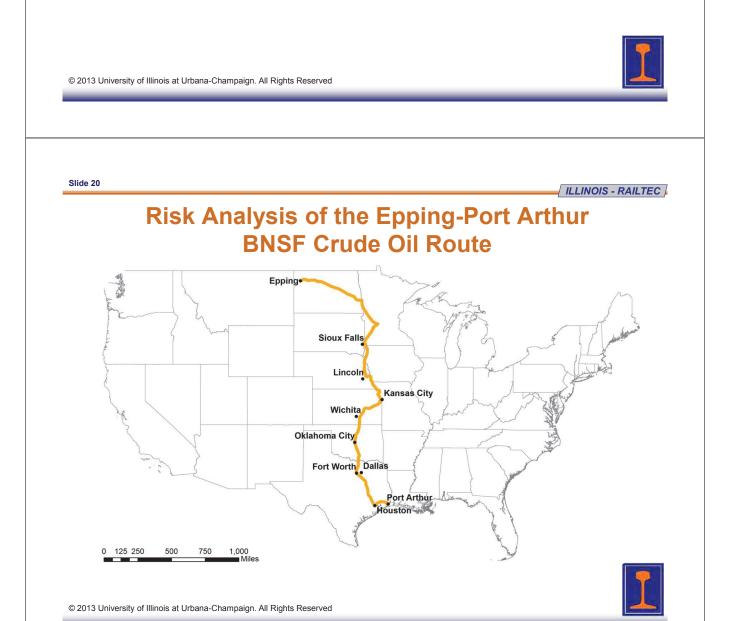
Slide 14

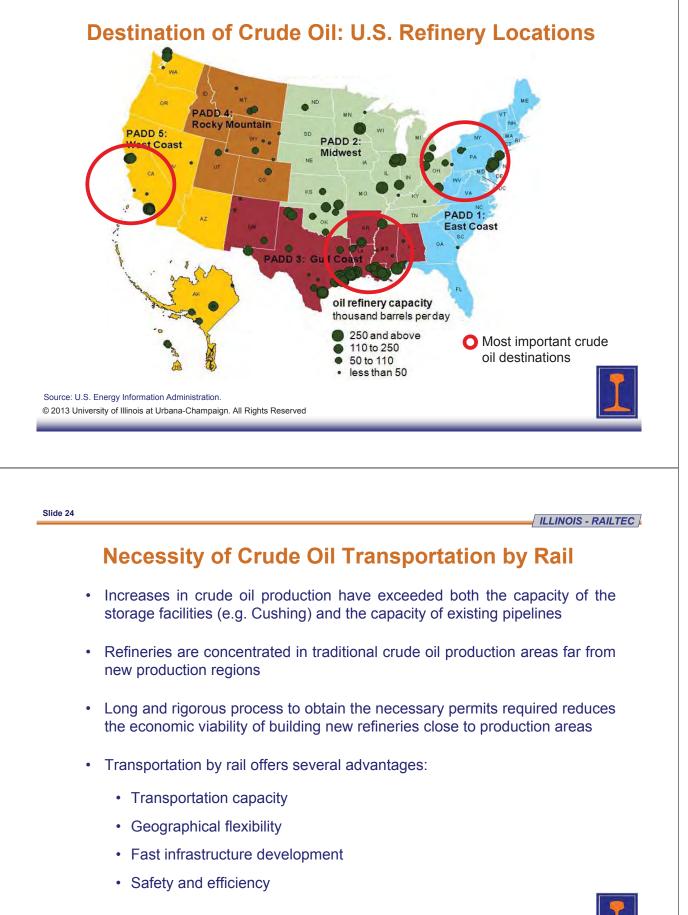
ILLINOIS - RAILTEC


Accident-caused release rate summary


(The "probability" or frequency term in the risk definition)

Slide 15


ILLINOIS - RAILTEC



Potential applications

- · Evaluating cost effectiveness of alternate design tank cars
- Evaluating alternate routes
- Increase emergency response preparedness
- · Evaluating infrastructure improvement
- Evaluating shipment risk cost

Overview of Crude Oil Transportation by Rail Crude Oil as a Percentage of Total Class I Carload Originations by Year Average for 2008 Fourth quarter of 2012 First quarter of 2013 Average for 2012 0.3% 0.8% 1.1% 1.4% 233,819 **Rail Carloads of Crude Oil Involving U.S Class I Railroads** 65,751 29.605 12,291 9,961 6,032 4,729 5,912 9,500 10,840 2011 2012 2006 2007 2008 2009 2010 2003 2004 2005 Sources: Association of American Railroads and http://www.twinportsrail.com/ © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved Slide 22 ILLINOIS - RAILTEC Origin of Crude Oil: U.S Shale Deposits (2011) Bakker Forest Iky Chero Woodford Fayetteville Chatt V& RId Barnett 100 200 Eat Haynesville-Bossier Ford le plays Basins Current plays Prospective plays eia od plays Shallowest/ youngest Intermediate depth/ ag Deepest/ oldest Most important shale deposits Source: U.S. Energy Information Administration. © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

Source: AAR. Moving Crude Oil by Rail. 2013 © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

The Lac-Megantic Derailment

- On July 6, 2013 (Saturday), at approximately 1:14 am, an unattended 73-car freight train carrying crude oil derailed in Lac-Mégantic, Quebec, Canada
- The resultant fire and explosions from the accident caused the death of 47 people and the destruction of half of Lac-Mégantic's downtown area
- More than 2,000 people were evacuated
- It is the worst crude oil rail accident in North American history and the deadliest rail accident in Canada in the past 150 years

© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

Explosion originated by the derailment of the 73 tank car crude oil train.

Aerial view of Lac-Megantic's Downtown after the accident.

Slide 26

ILLINOIS - RAILTEC

Basic Route Information Epping, ND - Port Arthur, TX BNSF Route

Origin	Inergy facility. Epping, ND.
Destination	GT Omniport. Port Arthur, TX.
Track Owner	BNSF
Total Length (Miles)	1,907.6
Segments	930
Distribution of Track Class* Class 1 Class 2 Class 3 Class 4 Class 5	0.5% 3.6% 19.6% 60.2% 13.3%
Method of Operation* Non-Signaled Signaled	24.8% 73.2%
Average Population Density per Squared Miles	290

Expansion of the Inergy crude oil transfer station near Epping, N.D.

A BNSF train of tanker cars crosses a trestle on the outskirts of Minot, N.D.

* Note: These percentages do not add up to 100%. Segments with unknown values for track class or method of operation (approximately 2% of the route) were neglected.

ILLINOIS - RAILTEC

Origin: North Dakota Crude Oil Rail Loading Facilities (2013)

Red Storer Stately Red Storer Stately Using Usin	NDGS Bakke	ober 2012 Data	N
Cilicatibase frankas	Name on Map	Railroad	Capacity (Mbbl/d)
	Inergy	BNSF	160
The Inergy facility in numbers:	Bakken Oil Express	BNSF	100
 Largest North Dakota's crude oil terminal 	Red River Supply	BNSF	90
 120,000 bbl/d rail loading capacity 	Enbridge	BNSF	80
 Ability to handle up to 120 car unit trains 	Hess	BNSF	70
	Plains BNSF	BNSF	65
 720,000 bbl crude oil storage capacity Source: North Dakota Pipeline Authority 2013 and Inergy, L.P. website: http://www.inergylp.com/ © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved 			1

Slide 28

ILLINOIS - RAILTEC

Destination: Port Arthur GT Omniport

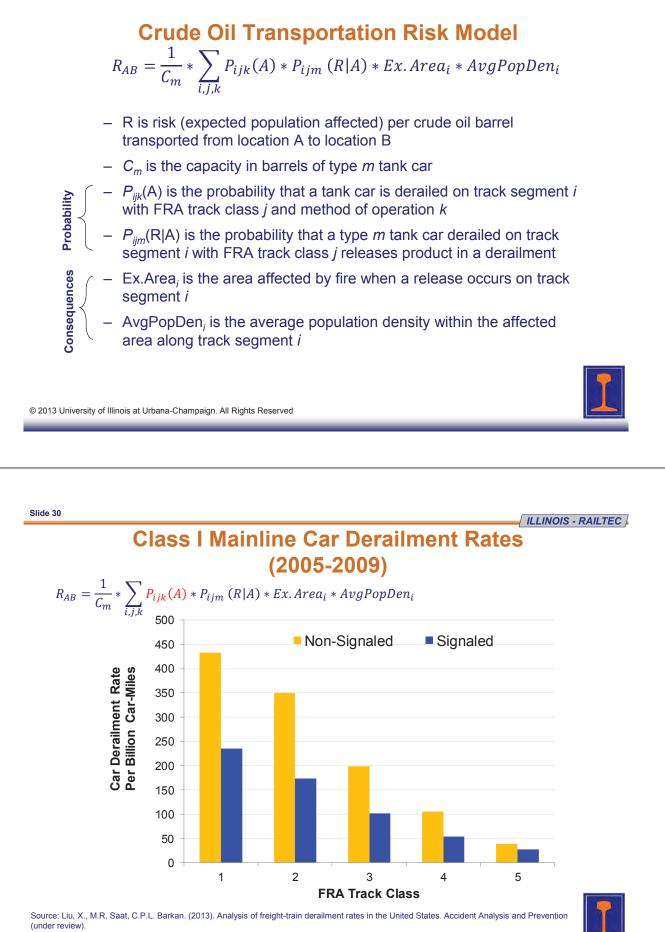
The GT Omniport terminal in numbers:

- 100,000 bbl/d rail unloading capacity
- Storage of up to 250 rail cars (1,200 after expansion)

 Refineries capacity of over 1 million bbl/d within 8 miles

GT Omniport Unloading Area

GT Omniport Refinery Area


Largest Gulf Coast Crude Oil Refineries with Rail Unloading Facilities

Location	Name	Capacity (bbl/d)	Railroad	
Port Arthur, TX	GT Omniport	100,000	BNSF, UP, KCS	
Artesia, NM	Holly Frontier Navajo	70,000**	BNSF	
Beaumont, TX	Jefferson	70,000*	KCS	
El Dorado, AR	Delek	50,000	BNSF, UP	
Hull, TX	Keyera	50,000*	UP	
Corpus Christi, TX	Trafigura	30,000	BNSF, UP	

*In operation only partially. Still under construction or expansion ** In operation early 2014

Source: RBN Energy, LLC website: http://www.rbnenergy.com © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

ILLINOIS - RAILTEC **Route Distribution of FRA Track Class and Method of Operation** Eppi Epp **FRA Track Class** 1 2 3 4 5 Total Mode of Operation Sioux Fa Sioux Fa Signal 2.1 17.4 313.2 794.2 253.6 1,380.5 Lince Non-7.0 50.7 60.1 353.9 0.3 471.9 Signal Kansas City Kansas City Wich Wichit 373.2 1,148.1 253.9 Total 9.1 68.1 Oklahoma Ci Oklahoma C Fort Wort Fort Wor **FRA Track Class** 4 art Arthur 3 1 2 5 Total Mode of Operation Signal 0.1% 0.9% 16 4% 41 2% 12 7% 71.3% Mode of Operation Non-FRA Track Class 0.4% 3.1% 18.6% 0.0% 2.7% 24.7% Signal Non Signal Sinnal 2 Total 0.5% 3.6% 19.6% 59.7% 12.8% 3 а Note: Both tables represent the distribution of the route in miles. © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved Slide 32 ILLINOIS - RAILTEC **Conditional Probability of Release** $R_{AB} = \frac{1}{C_m} * \sum_{i,j,k} P_{ijk}(A) * P_{ijm}(R|A) * Ex. Area_i * AvgPopDen_i$

- The speed-dependent conditional probability of release (CPR) was calculated for each segment following the equation:

$$CPR = A * S$$
 A: coefficient that depends on the type of tank car
S: derailment speed (based on segment track class)

 Tank car types 111A100W1, 111A100W2, 111A100W3, 111A100W5 and 211A100W1 were used for the analysis as they are the most utilized cars, accounting for over 65% of the entire fleet:

CPR = 0.0096 * S

	Track class				
	1	2	3	4	5
Speed (mph)	10	25	40	60	70
CPR for 111A100W1	0.096	0.24	0.384	0.576	0.672

Source: Liu et al. 2013. Safety Effectiveness of Integrated Risk Reduction Strategies for the Transportation of Hazardous Materials by Rail. Kawprasert. 2010. Dissertation. Quantitative Analysis Hazmat Transportation by Railroad. © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

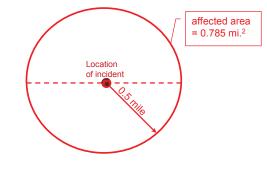
Exposed Area

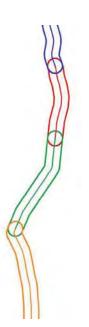
$$R_{AB} = \frac{1}{C_m} * \sum_{i,j,k} P_{ijk}(A) * P_{ijm}(R|A) * Ex. Area_i * AvgPopDen_i$$

 "Exposed Area" is defined as the area where DOT recommends that people be evacuated or sheltered in place in a hazardous material release incident

- Worst case scenario was assumed:
 - Night release
 Large spill (>60 gallons)
 Fire occurs

	/From a small pa	SMALL SPILLS skage or small leak from a large package	LARGE SPILLS (From a large package or from many small packages)		
. Guide NAME OF MATERIA	First ISOLATE in all Directions Meters (Feet)	Then PROTECT persons Downwind during- DAY NIGHT Kilometers (Miles) Kilometers (Miles)	First ISOLATE in all Directions Meters (Feet)	Then PROTECT persons Downvind during- DAY NIGHT Kilometers (Miles) Kilometers (Mil	
194 131 Petroleum sour crude			60 m (200 ft)	0.5 km (0.3 mi) 0.7 km (0.5)	
flammable, toxic	and the second second	and the second second for the	The states	And the set of the set	


Note: The figure shows partially the Table 1 "Initial Isolation and Protective Action Distances" in page 342 of the document Source: DOT 2012 Emergency Response Guidebook © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved


Slide 34

Exposed Area

$$R_{AB} = \frac{1}{C_m} * \sum_{i,j,k} P_{ijk}(A) * P_{ijm}(R|A) * Ex.Area_i * AvgPopDen_i$$

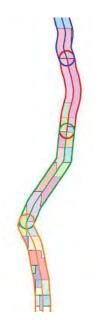
- Following ERG recommendations, ¹/₂-mile radius evacuation was assumed for the determined conditions
- Using GIS software, ArcMap™, a buffer with this distance was created for each segment along the route

ILLINOIS - RAILTEC

¹/₂-mile radius buffer for each element in a section of the route

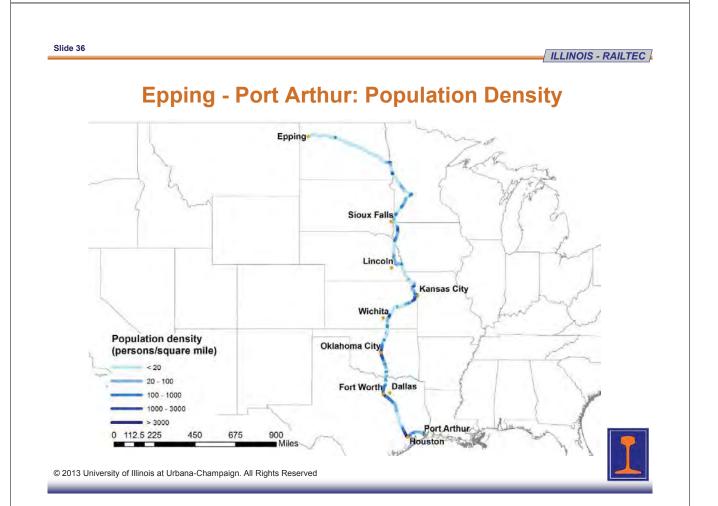
ILLINOIS - RAILTEC

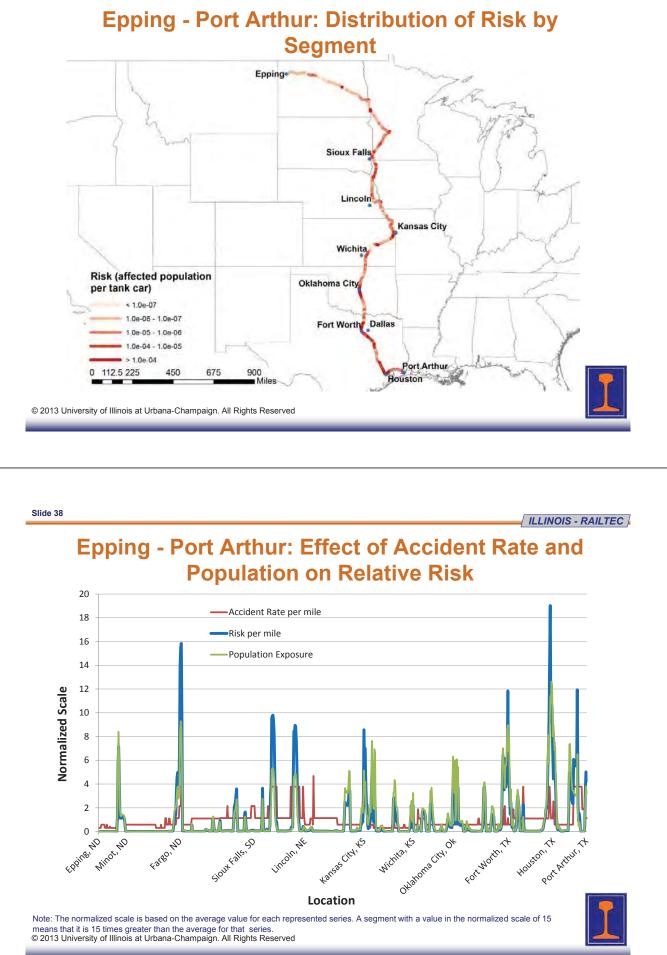
Average Population Density


$$R_{AB} = \frac{1}{C_m} * \sum_{i,j,k} P_{ijk}(A) * P_{ijm}(R|A) * Ex.Area_i * AvgPopDen_i$$

- An overlay of the route's buffer and population density was created using ESRI 2010 census tract data and GIS software, ArcMap™
- Aproximately 556,400 people live within a ¹/₂-mile radius of the route
- The average population density in the buffer area corresponding to each segment was determined

Distribution of the Average Population Density


Pop. Density (persons per square mile)	Length (miles)	%Length
> 3000	26.3	1.4%
1000 - 3000	140.4	7.4%
100 - 1000	421.5	22.1%
20 - 100	472.7	24.8%
< 20	846.7	44.4%


Note: Each color in the figure indicates a different population density. @ 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

Overlay of the route's ½-mile radius buffer and the population density

Epping - Port Arthur: Risk Summaries

Risk Level	Length (miles)	% Length	Risk (pop affected per tank car)	Risk (pop affected per gallon) *	% Risk
> 1.0E-04	152.7	8.0%	1.01E-02	3.18E-07	60.8%
1.0E-04 - 1.0E-05	474.1	24.9%	5.46E-03	1.72E-07	32.9%
1.0E-05 - 1.0E-06	688.8	36.1%	9.40E-04	2.95E-08	5.7%
1.0E-06 - 1.0E-07	496.5	26.0%	1.08E-04	3.39E-09	0.6%
< 1.0E-07	40.3	2.1%	4.00E-06	1.26E-10	0.0%

Route risk from Epping, ND to Port Arthur, TX:

- 1.662E-02 people affected per tank car
- 5.227E-07 persons/barrel
- Statistically, 1.6 people will be affected per every 100-car unit train
- This train will tranport about 3,180,000 gallons (75,700 barrels)

*Note: The capacity of the 111A100W1 was assumed to be 31,800 gallons. These values aim to provide an idea of the risk per gallon transported. They only make sense when the amount transported is multiple of 31,800 gallons. That is each tank car is full.

© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

ILLINOIS - RAILTEC

Slide 40

Potential risk reduction strategies Infrastructure Operational

Track class upgrade *Reduce accident occurrence*

Railcar/Container

 Tank car safety design

 Reduce incidence and

 severity of releases

 © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

Speed reduction Reduce accident severity

Routing

Alternative routings Reduce consequence of releases

Example risk reduction strategy optimization: Tank car safety design

© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

Slide 42

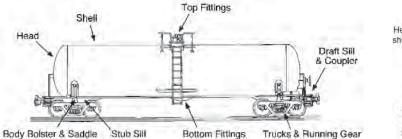
ILLINOIS - RAILTEC

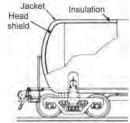
Tank car weight vs. capacity tradeoff

Maximum Gross Rail Load (GRL) = Lading Capacity + Light (Empty Weight)

Sulfuric Acid

Density = 14.26 lbs./gallon ca. 13,000 gallon tank


Alcohol


Density = 6.58 lbs./gallon ca. 29,000 gallon tank

- Tank cars can be made safer by increasing tank thickness and adding various protective features, but these increase the weight and cost of the car and reduce its capacity and consequent transportation efficiency
- Formal consideration of this tradeoff between tank car safety and transportation efficiency, and use of optimization techniques to address this tradeoff represent the first phase involved in tank car safety design optimization © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

ILLINOIS - RAILTEC

Tank car risk reduction options (RROs)

- Principal approaches considered to enhance tank car safety design:
 - Thicker/stronger head and/or head shield
 - Thicker/stronger shell
 - Adding top fittings protection
 - Removing bottom fittings
- Stronger tank and better-protected fittings improve accident performance
- Also increase weight and cost, thereby reduce transport efficiency
- · Thus there is a tradeoff between enhanced safety and transport efficiency

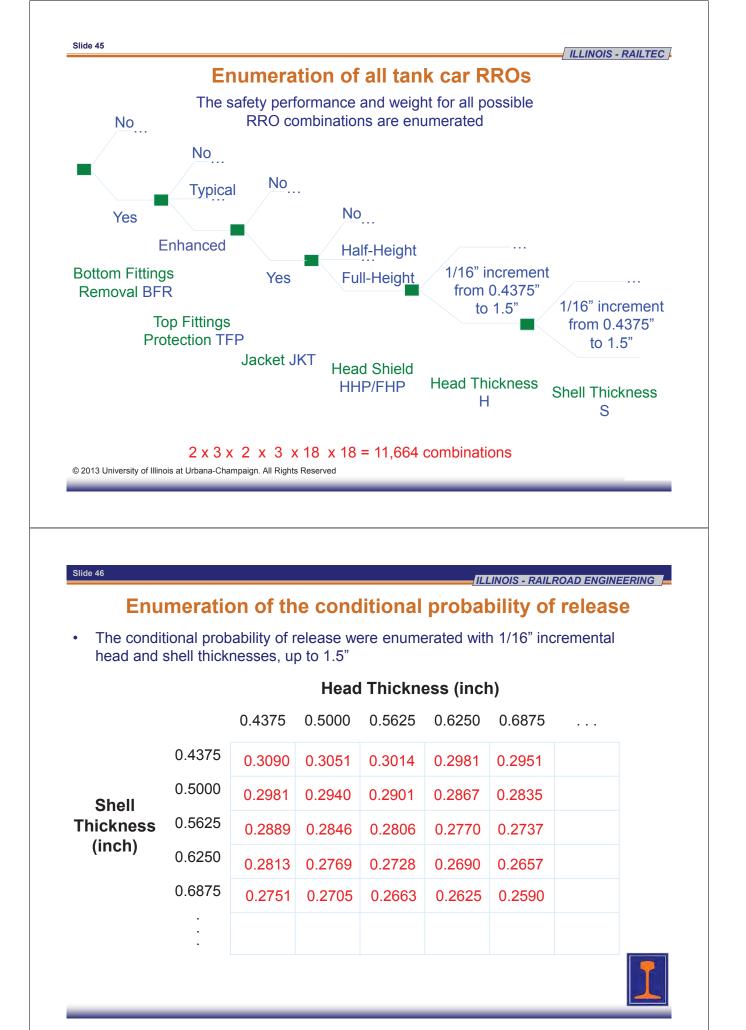
© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

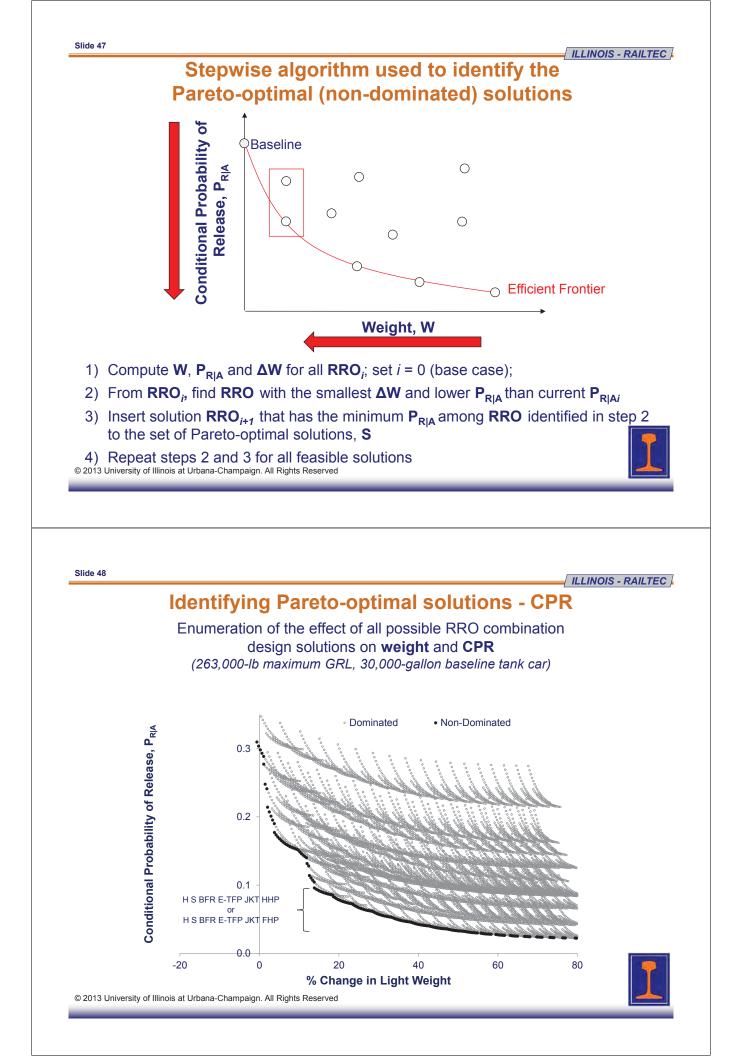
Slide 44

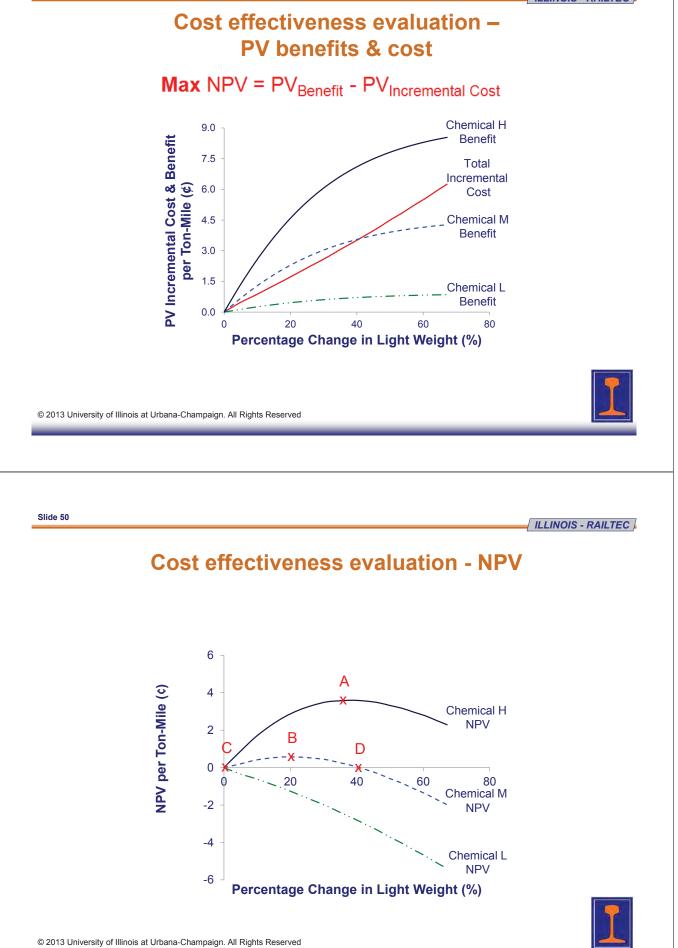
ILLINOIS - RAILTEC

Estimating tank car safety performance

- More than 40 thousand records of tank cars involved in accidents have been recorded since 1970 in the RSI-AAR Tank Car Accident Database
- Resultant database provides a robust source of information for quantitative analysis of tank car safety design
- Treichel et al (2006) developed a logistic regression model to estimate tank car conditional probability of release

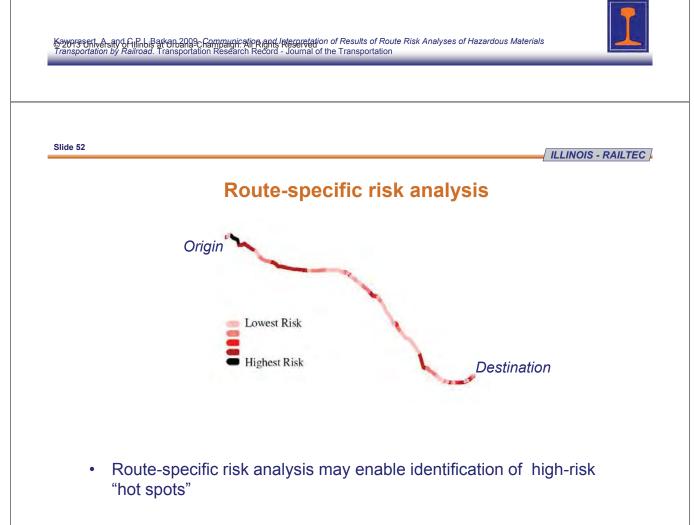

$$P_{RilA} = 0.533 e^{L(i)} / (1 + e^{L(i)})$$

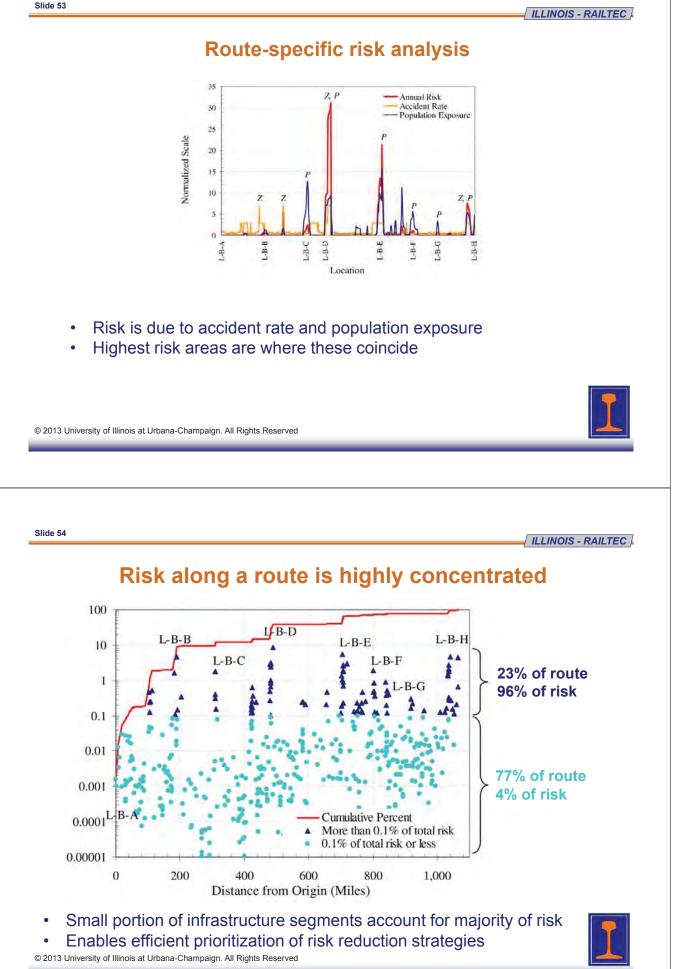

• The calculated regression equations for the four release sources are:

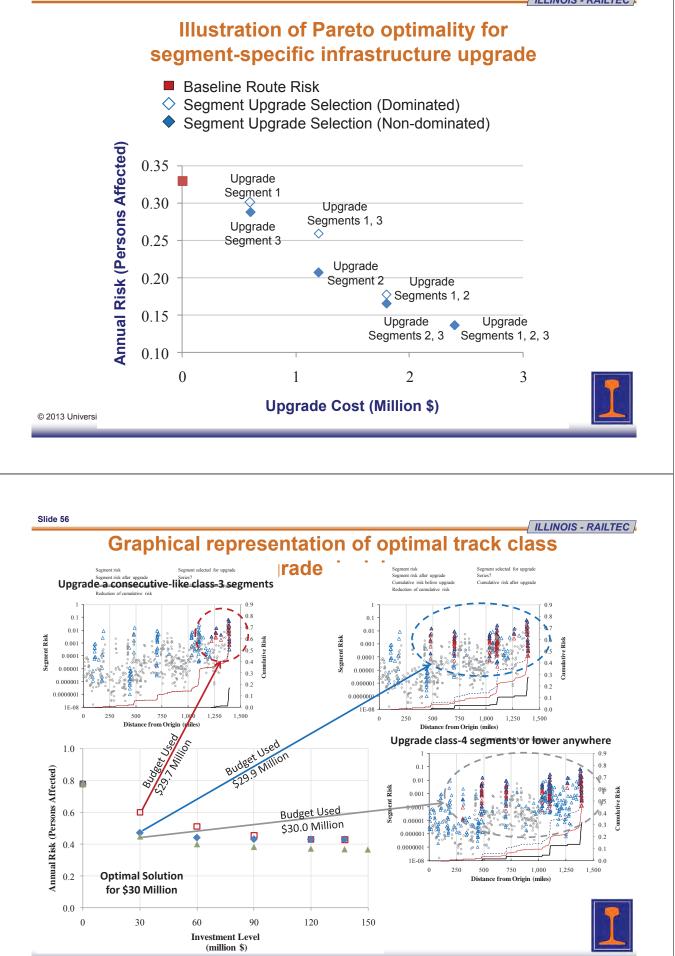

L(HEAD) = - 0.4492 - 1.1672 HST - 1.9863 HMT - 0.9240 INS - 0.4176 SHELF-0.4905 YARD

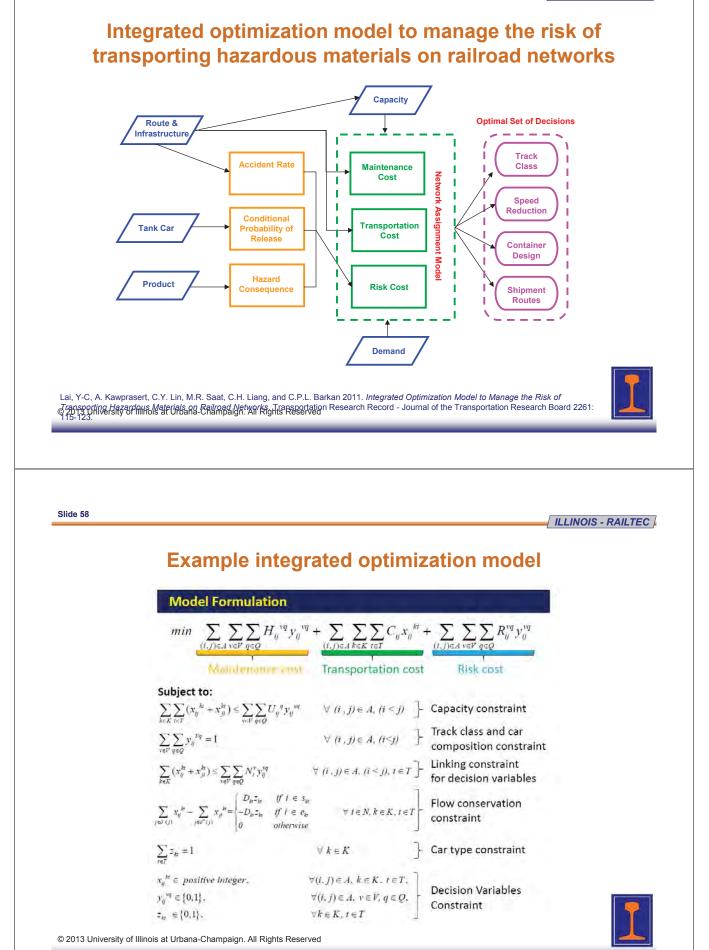
L(SHELL) = 0.4425 - 0.6427 INS - 4.1101 STS - 1.5119 YARD

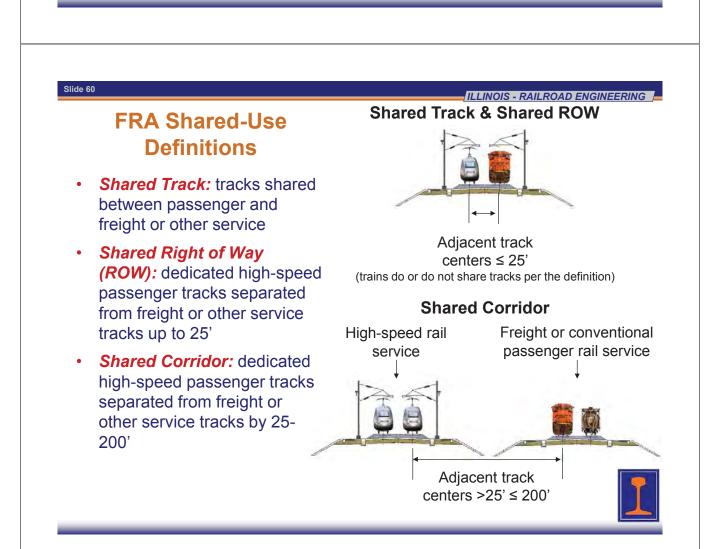
L(TOP FITTINGS) = - 1.0483 - 0.8354 PRESS - 0.8388 INS + 0.1809 SHELF - 0.3439 YARD

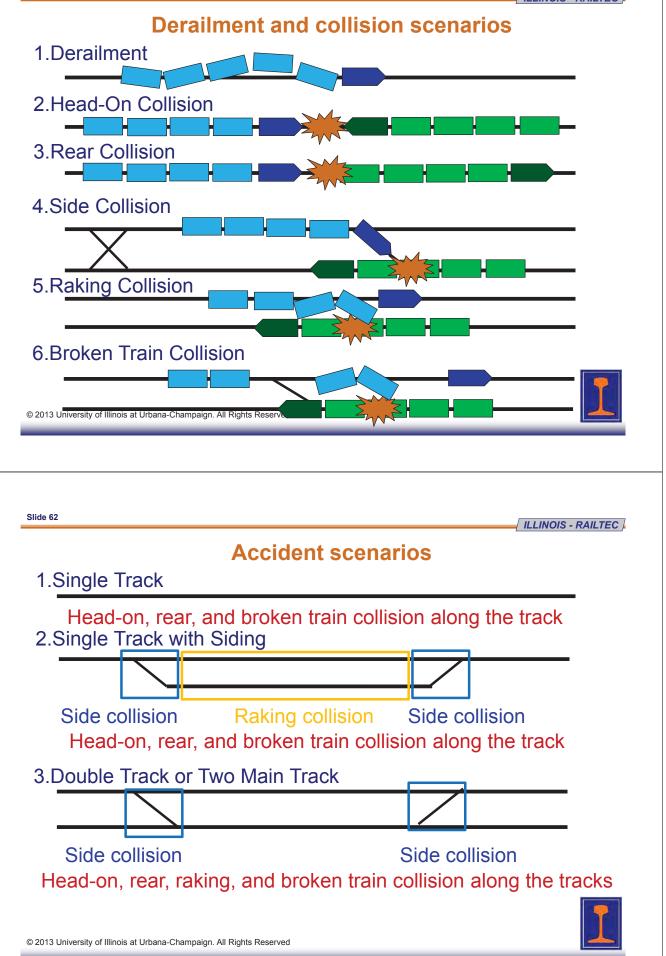



Example risk reduction strategy optimization: Railroad infrastructure/track class upgrade

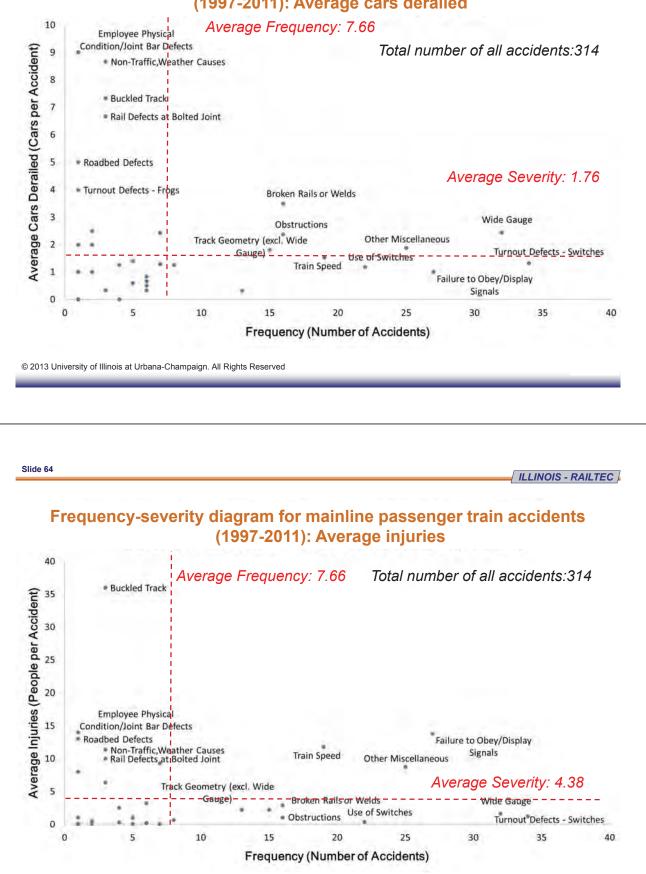


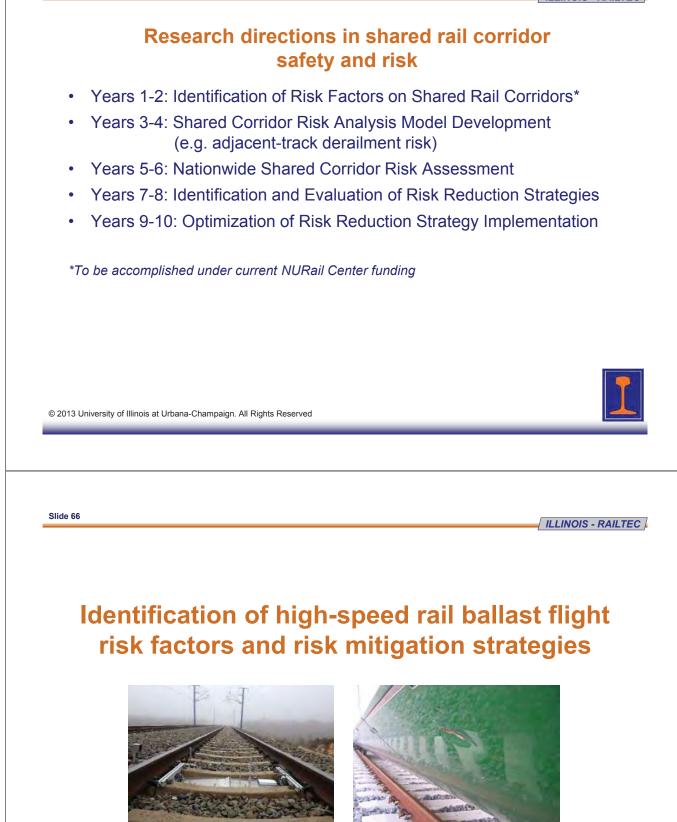


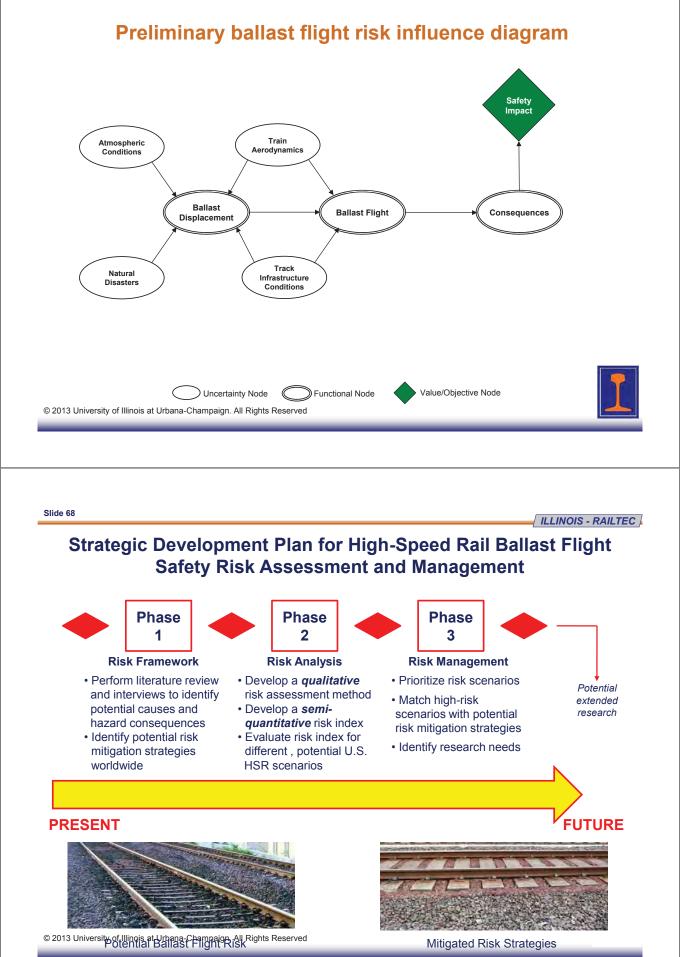


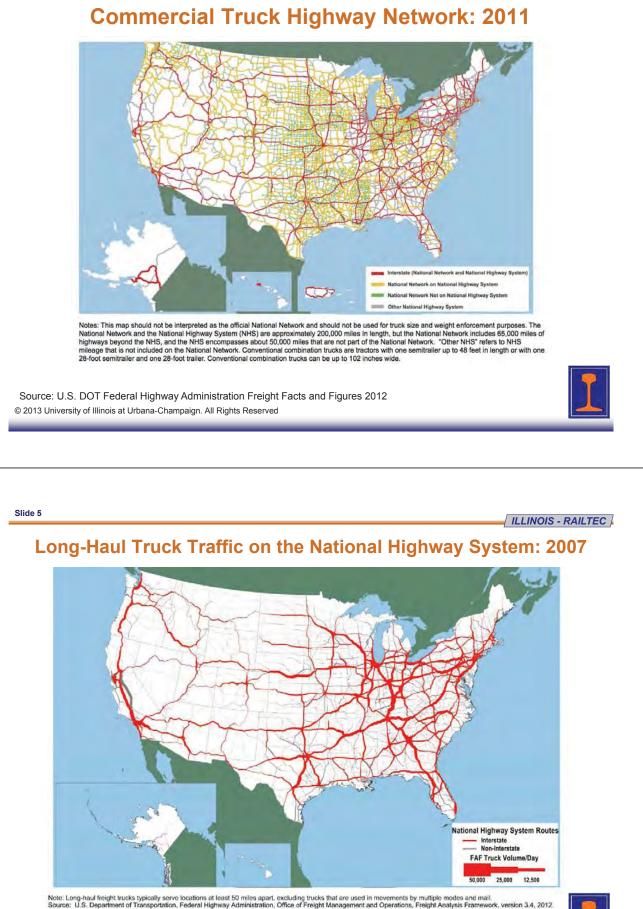


Identification of major risk factors for passenger trains on freight rail corridors

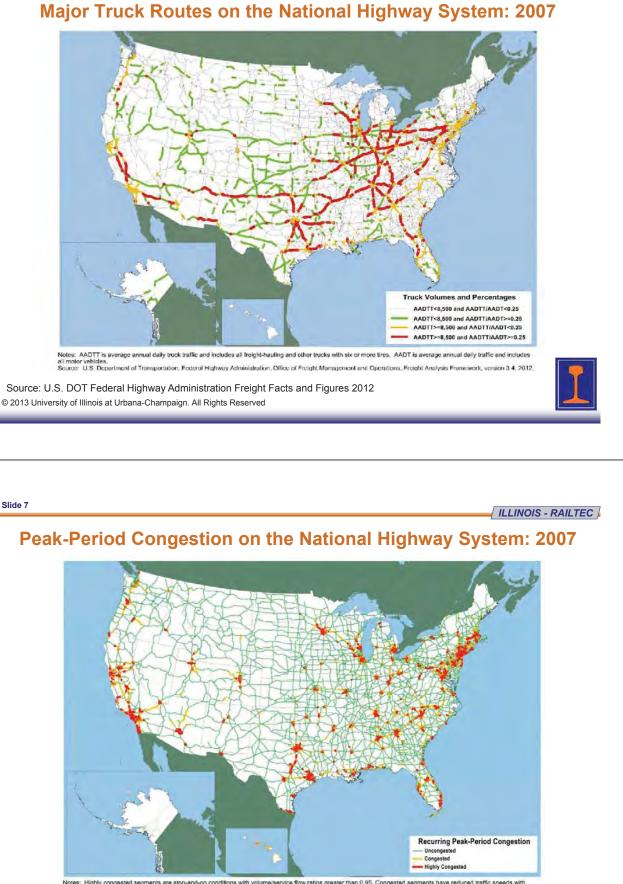




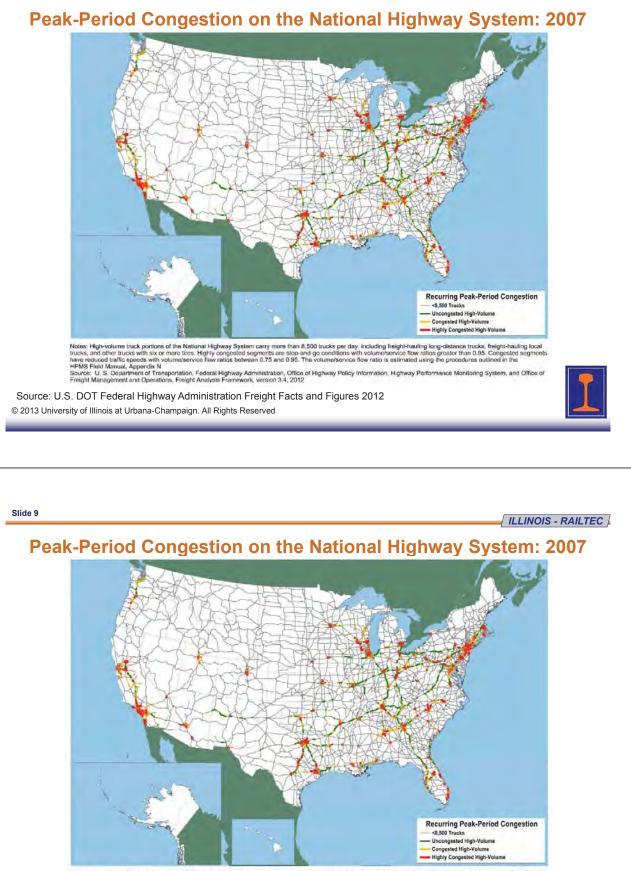




Key Takeaways There is always a risk associated with the • transportation of hazardous materials. It is essential to properly understand and assess this risk. · Risk models allow us to quantify this risk. Their results can assist in risk mitigation. © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved Slide 1 ILLINOIS - RAILTEC **OVERVIEW OF HIGHWAY FREIGHT TRANSPORTATION SAFETY CEE498 TSR - Transportation Safety and Risk** Dr. Rapik Saat, Ph.D. **Rail Transportation and Engineering** Center – RailTEC **Department of Civil & Environmental** Engineering University of Illinois at Urbana-Champaign, U.S.A.

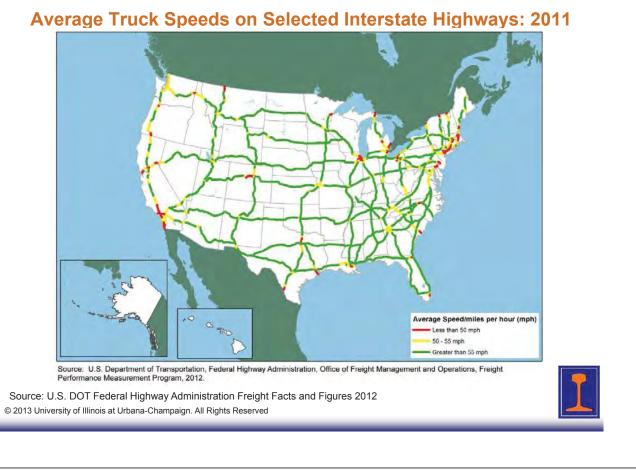


Source: U.S. Department of Transportation, Federal Highway Administration, Office of Freight Management and Operations, Freight Analysis Framew Source: U.S. DOT Federal Highway Administration Freight Facts and Figures 2012



Notes: Highly congested segments are stop-and-go conditions with volume/service flow ratios greater than 0.95. Congested segments have reduced traffic speeds with volume/service flow ratios between 0.75 and 0.95. The volume/service flow ratio is estimated using the procedures outlined in the HPMS Field Manual, Appendix N. Source: U.S. Department of Transportation, Federal Highway Administration, Office of Highway Policy Information, Highway Performance Monitoring System, and Office of Freight Manegement and Operations, Freight Analysis Framework, version 3.4, 2012

Source: U.S. DOT Federal Highway Administration Freight Facts and Figures 2012 © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved


1

Notes: High-volume truck portions of the National Highway System carry more than 8,500 trucks per day, including freight-hauling long-distance trucks, freight-hauling local trucks, and other trucks with six or more times. Highly congested segments are stop-and go conditions with volume/service flow ratios greater than 0.95. Congested segments have reduced traffic speeds with volume/service flow ratios is estimated using the procedures outlined in the PMS Field Manual, Appendix N. Source: U.S. Department of Transportation, Federal Highway Administration, Office of Highway Policy Information, Highway Porformance Monitoring System, and Office of Freight Management and Operations, Freight Analysis Framework, version 3.4, 2012

Source: U.S. DOT Federal Highway Administration Freight Facts and Figures 2012 © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

1

Slide 11

ILLINOIS - RAILTEC

Commercial Motor Carrier Compliance Review Activity by Safety Rating: 2011

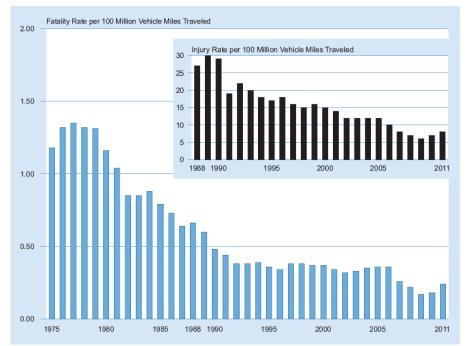
Safety rating	Federal	State	Total	Percentage
Satisfactory	3,466	1,862	5,328	49%
Conditional	2,365	1,175	3,540	32%
Unsatisfactory	207	114	321	3%
Not rated	158	1,620	1,778	16%
Total	6,196	4,771	10,967	100%

Source: U.S. DOT Federal Highway Administration Freight Facts and Figures 2012 © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

Roadside Safety Inspection Activity Summary by Inspection Type: 2000 and 2009-2011

)						
	2000		2009		2010	2010		
	Number	Percent	Number	Percent	Number	Percent	Number	Percent
All inspections								
Number of inspections	2,453,776	100.0	3,530,382	100.0	3,569,373	100.0	3,601,302	100.0
With no violations	639,593	26.1	1,176,351	33.3	1,225,324	34.3	1,342,133	37.3
With violations	1,814,183	73.9	2,354,031	66.7	2,344,049	65.7	2,259,169	62.7
Driver inspections								
Number of inspections	2,396,688	100.0	3,429,882	100.0	3,470,871	100.0	3,484,536	100.0
With no violations	1,459,538	60.9	2,100,760	61.2	2,316,960	66.8	2,422,611	69.5
With violations	937,150	39.1	1,329,122	38.8	1,153,911	33.2	1,061,925	30.5
With OOS violations	191,031	8.0	196,625	5.7	183,350	5.3	173,980	5.0
Vehicle inspections								
Number of inspections	1,908,300	100.0	2,349,072	100.0	2,413,094	100.0	2,425,973	100.0
With no violations	584,389	30.6	779,891	33.2	834,551	34.6	880,172	36.3
With violations	1,323,911	69.4	1,569,181	66.8	1,578,543	65.4	1,545,801	63.7
With OOS violations	452,850	23.7	506,878	21.6	480,416	19.9	491,730	20.3
Hazardous materials i	Hazardous materials inspections							
Number of inspections	133,486	100.0	222,587	100.0	211,154	100.0	208,852	100.0
With no violations	101,098	75.7	153,219	68.8	180,522	85.5	183,150	87.7
With violations	32,388	24.3	69,368	31.2	30,632	14.5	25,702	12.3
With OOS violations	9,964	7.5	10,323	4.6	9,210	4.4	7,998	3.8

Key: OOS = out of service


Source: U.S. DOT Federal Highway Administration Freight Facts and Figures 2012 © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

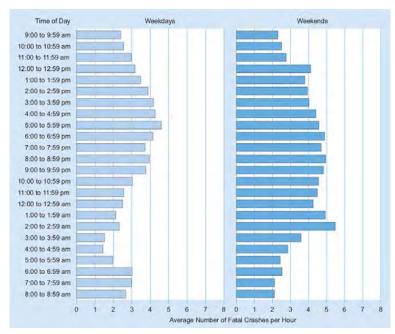
Slide 13

ILLINOIS - RAILTEC

Large Truck Occupant Fatality and Injury Rates per 100 Million Vehicle Miles Traveled

Persons Killed in Crashes Involving a Large Truck by Person Type and Crash Type

			Person Type			
	Truck	Occupants by Crash	Туре	Other Vehicle		
Year	Single Vehicle	Multiple Vehicle	Total	Occupants	Nonoccupants	Total
			Killed			
1975	643	318	961	3,106	416	4,483
1980	861	401	1,262	4,084	625	5,971
1985	634	343	977	4,227	530	5,734
1988	585	326	911	4,250	518	5,679
1990	485	220	705	4,071	496	5,272
1991	448	213	661	3,705	455	4,821
1992	396	189	585	3,460	417	4,462
1993	389	216	605	3,855	396	4,856
1994	451	219	670	4,013	461	5,144
1995	425	223	648	3,846	424	4,918
1996	412	209	621	4,087	434	5,142
1997	499	224	723	4,223	452	5,398
1998	486	256	742	4,215	438	5,395
1999	480	279	759	4,180	441	5,380
2000	484	270	754	4,114	414	5,282
2001	474	234	708	3,962	441	5,111
2002	449	240	689	3,886	364	4,939
2003	457	269	726	3,919	391	5,036
2004	469	297	766	4,042	427	5,235
2005	478	326	804	3,971	465	5,240
2006	500	305	805	3,797	425	5,027
2007	502	303	805	3,608	409	4,822
2008	430	252	682	3,151	412	4,245
2009	333	166	499	2,558	323	3,380
2010	339	191	530	2,797	359	3,686
2011	403	232	635	2,695	427	3,757


Source: U.S. DOT National Highway Traffic Safety Administration Traffic Safety Facts 2011 © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

Slide 15

ILLINOIS - RAILTEC

Average Fatal Crashes per Hour, by Time of Day, Weekdays and Weekends

Vehicles Involved in Crashes by Vehicle Type and Crash Severity

		Crash Severity						
	Fatal		Inje	Injury		amage Only	То	tal
Vehicle Type	Number	Percent	Number	Percent	Number	Percent	Number	Percent
Passenger Car	17,442	39.7	1,571,000	57.0	3,740,000	56.6	5,328,000	56.6
Light Truck	16,740	38.1	1,026,000	37.2	2,582,000	39.0	3,625,000	38.5
Large Truck	3,608	8.2	63,000	2.3	221,000	3.3	287,000	3.1
Motorcycle	4,749	10.8	77,000	2.8	18,000	0.3	100,000	1.1
Bus	244	0.6	13,000	0.5	44,000	0.7	57,000	0.6
Other	535	1.2	6,000	0.2	7,000	0.1	14,000	0.1
Total	*43,945	100.0	2,756,000	100.0	6,612,000	100.0	9,412,000	100.0

*Includes 627 vehicles of unknown type involved in fatal crashes.

Source: U.S. DOT National Highway Traffic Safety Administration Traffic Safety Facts 2011 © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

Slide 17

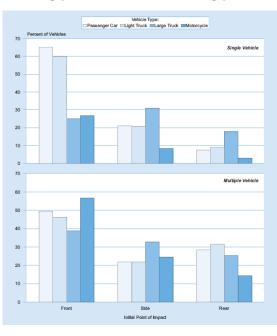
ILLINOIS - RAILTEC

Vehicles Involved in Single-and Two-Vehicle Crashes by Vehicle Maneuver and Crash Severity

		Crash Severity						
	Fa	tal	Injury		Property Damage Only		Total	
Vehicle Maneuver	Number	Percent	Number	Percent	Number	Percent	Number	Percent
Going Straight	23,539	62.3	1,242,000	55.1	3,011,000	49.9	4,276,000	51.4
Turning Left	2,364	6.3	276,000	12.2	556,000	9.2	834,000	10.0
Stopped in Traffic Lane	454	1.2	226,000	10.0	770,000	12.8	996,000	12.0
Turning Right	339	0.9	73,000	3.2	264,000	4.4	337,000	4.0
Slowed in Traffic Lane	311	0.8	121,000	5.4	359,000	5.9	481,000	5.8
Merging/Changing Lanes	665	1.8	59,000	2.6	290,000	4.8	350,000	4.2
Negotiating Curve	8,218	21.7	134,000	6.0	278,000	4.6	420,000	5.0
Backing Up	117	0.3	15,000	0.7	156,000	2.6	171,000	2.1
Passing Other Vehicle	740	2.0	19,000	0.8	70,000	1.2	89,000	1.1
Starting in Traffic Lane	228	0.6	55,000	2.4	150,000	2.5	205,000	2.5
Leaving Parking Space	20	0.1	6,000	0.3	34,000	0.6	40,000	0.5
Making U-Turn	152	0.4	13,000	0.6	37,000	0.6	50,000	0.6
Entering Parking Space	10	*	2,000	0.1	18,000	0.3	20,000	0.2
Disabled in Traffic Lane	33	0.1	2,000	0.1	5,000	0.1	6,000	0.1
Other Maneuver	345	0.9	13,000	0.6	37,000	0.6	50,000	0.6
Total	**37,813	100.0	2,253,000	100.0	6,035,000	100.0	8,326,000	100.0

*Less than 0.05 percent.

**Includes 278 vehicles involved in fatal crashes with unknown vehicle maneuver.



Slide 19

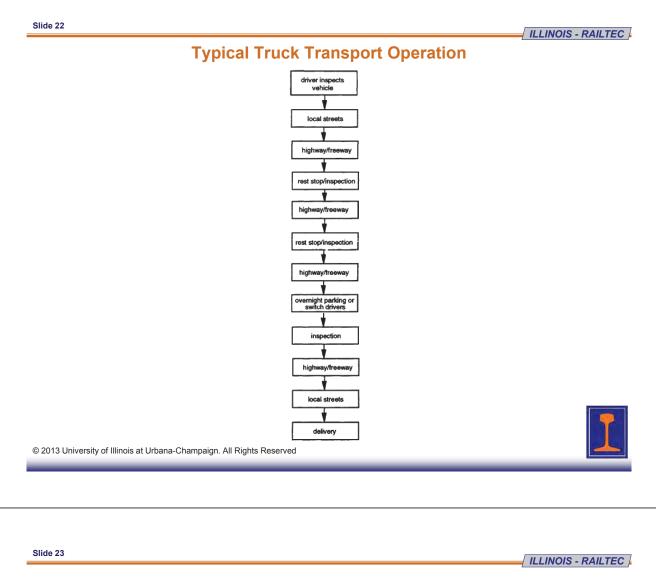
ILLINOIS - RAILTEC

Percent of Vehicles in Crashes, by Initial Point of Impact, Crash Type, and Vehicle Type

Large Trucks Involved in Crashes by Truck Type, Rollover Occurrence, and Crash Severity

		Rollover O	ccurrence			
	Y	es	N	0	Total	
Truck Type	Number	Percent	Number	Percent	Number	Percent
		F	atal Crashes			
Single-Unit Truck	171	16.3	879	83.7	1,050	100.0
Combination Truck	319	12.5	2,239	87.5	2,558	100.0
Total	490	13.6	3,118	86.4	3,608	100.0
		Ir	njury Crashes			
Single-Unit Truck	2,000	6.2	28,000	93.8	30,000	100.0
Combination Truck	3,000	9.0	30,000	91.0	33,000	100.0
Total	5,000	7.7	58,000	92.3	63,000	100.0
		Property-I	Damage-Only Cra	ashes		
Single-Unit Truck	1,000	0.8	108,000	99.2	109,000	100.0
Combination Truck	3,000	2.9	109,000	97.1	112,000	100.0
Total	4,000	1.9	217,000	98.1	221,000	100.0
			All Crashes			
Single-Unit Truck	3,000	2.1	137,000	97.9	140,000	100.0
Combination Truck	7,000	4.4	141,000	95.6	147,000	100.0
Total	9,000	3.3	278,000	96.7	287,000	100.0

Source: U.S. DOT National Highway Traffic Safety Administration Traffic Safety Facts 2011 © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved



Slide 21

ILLINOIS - RAILTEC

Highway Quantitative Transportation Risk Analysis CCPS 1995 – Chemical Transportation Risk Analysis

Truck Incidents - Initiating and Contributing Causes

Human errors	Equipment failures	System or procedural failures	External events
Driver impairment Speeding Driver overtired Enroute inspection Contamination Heating and cooling Overfilling Inerting Other vehicle's driver Taking tight turns/ramps too quickly (overturns) Unsecured load	Nondedicated trailer RR crossing guard failure Leaking valve Leaking fitting Brake failure Insulation/thermal protection failure Relief device failure Tire failure Soft shoulder Overpressure Material defect Vacuum Steering failure Stoshing High center of gravity Corrosion Bad weld Excessive grade Poor intersection design Suspension system Fifth wheel failure	Driver incentives Driver training Carrier selection Container specification Route selection Emergency response training Speed enforcement Driver rest periods Maintenance Inspection Time of day restrictions	Vandalism/sabotage Snow Rain Ice Fog Wind Flood/washout Rockslide/landslide Fire at rest areas/parking areas Hurricane Tornado Earthquake Existing accident

Truck Incidents – General Categories

- Vehicular collisions
- · Collisions with fixed objects
- Vehicle overturnings
- Railroad grade crossing accidents
- · Non-accident-initiated releases

 $\ensuremath{\mathbb{C}}$ 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

Slide 25

ILLINOIS - RAILTEC

Parameters Influencing Accident Rates

- Key parameters:
 - Urban versus rural routes
 - Divided versus undivided highway
- Location-specific conditions (e.g. excessive grade, obstructions to vision, poorly designed intersections)
- Weather conditions
- Carrier safety performance

	Highway Class	Truck Accident Rate		
Area	Roadway	(per 10° vehicle miles)	Release Probability	
Rural	Two-lane	2.19	0.086	
Rural	Multilane, undivided	4.49	0.081	
Rural	Multilane, divided	2.15	0.082	
Rural	Freeway (limited access)	0.64	0.090	
Urban	Two-lane	8.66	0.069	
Urban	Multilane, undivided	13.92	0.055	
Urban	Multilane, divided	12.47	0.062	
Urban	One-way street	9.70	0.056	
Urban	Freeway (limited access)	2.18	0.062	

^aHarwood and Russell (1992); Transportation Data Source 4-27.

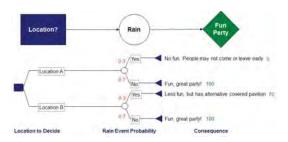
© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

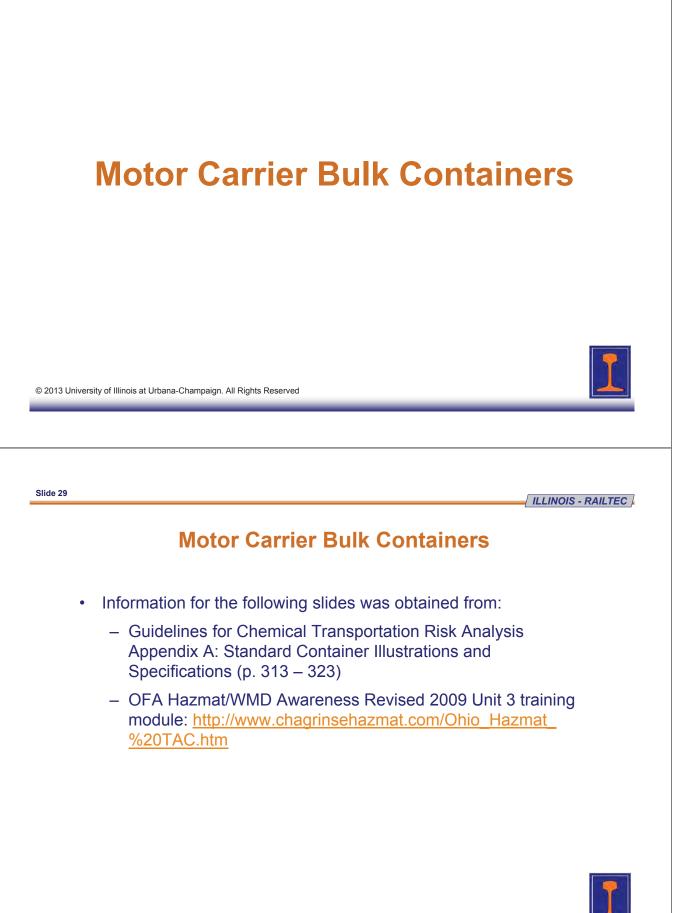
Parameters Influencing Release Probabilities

- Vehicle and container characteristics (e.g. material and wall thickness, double wall, protective shielding devices)
- Accident environments (e.g. high or low speed, overturning)
- Product (e.g. material phase liquid or gas, material temperature and pressure)

	Highway Class	Truck Accident Rate		
Area	Roadway	(per 10 ^e vehicle miles)	Release Probability	
Rural	Two-lane	2.19	0.086	
Rural	Multilane, undivided	4.49	0.081	
Rural	Multilane, divided	2.15	0.082	
Rural	Freeway (limited access)	0.64	0.090	
Urban	Two-lane	8.66	0.069	
Urban	Multilane, undivided	13.92	0.055	
Urban	Multilane, divided	12.47	0.062	
Urban	One-way street	9.70	0.056	
Urban	Freeway (limited access)	2.18	0.062	

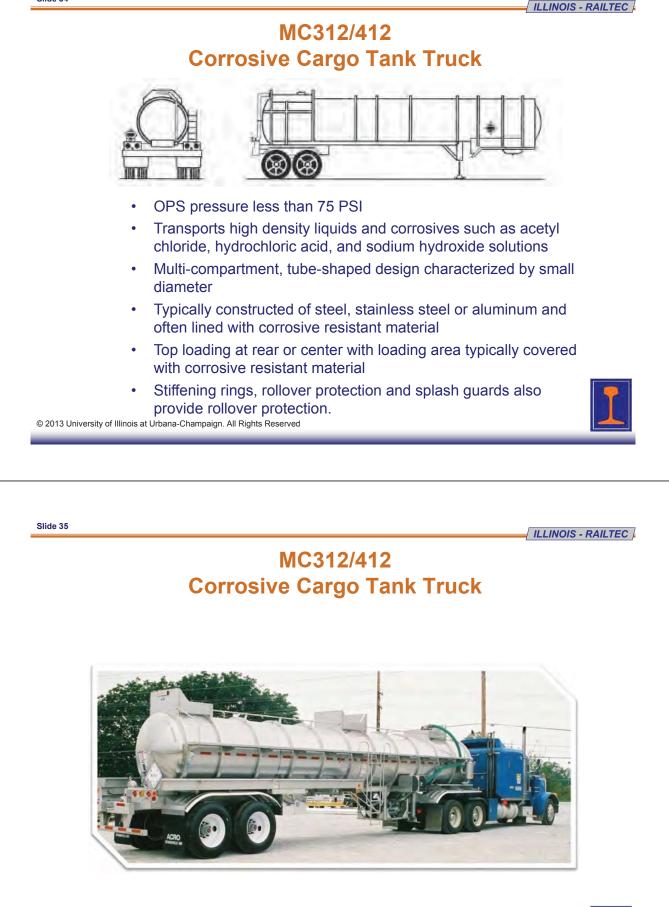
^aHarwood and Russell (1992); Transportation Data Source 4-27.

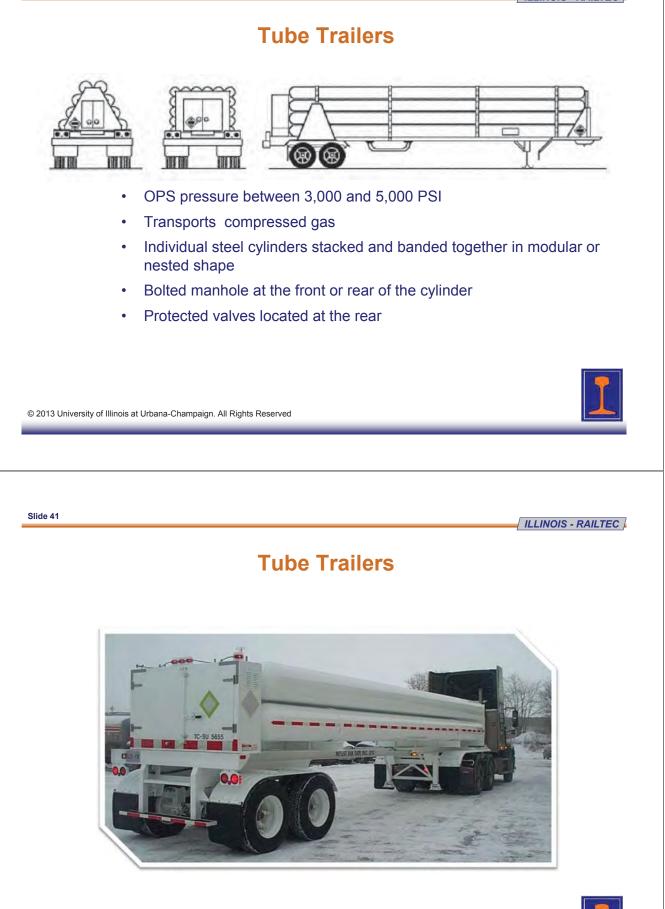

© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

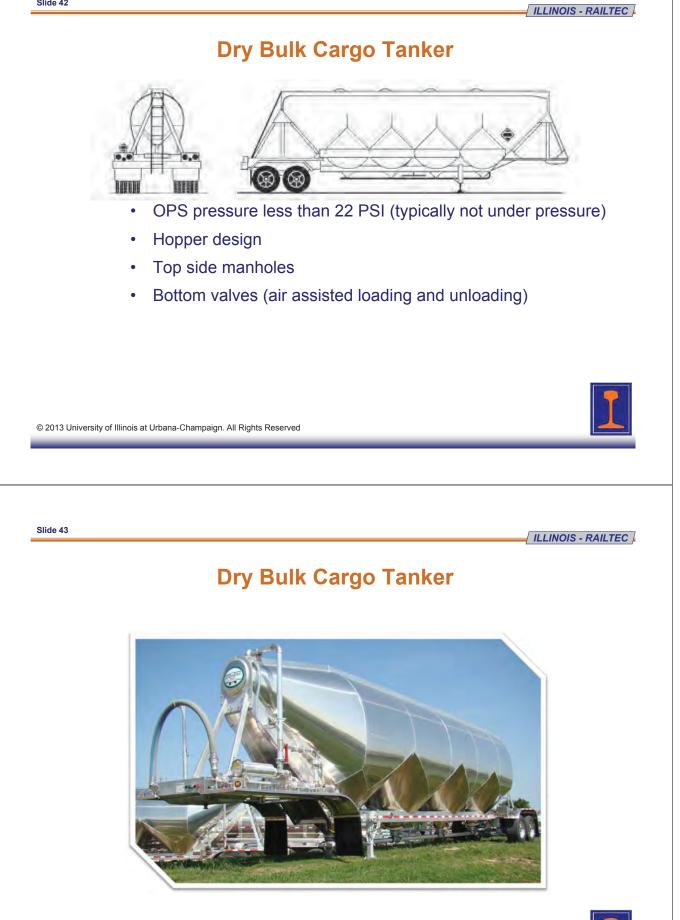

ILLINOIS - RAILTEC

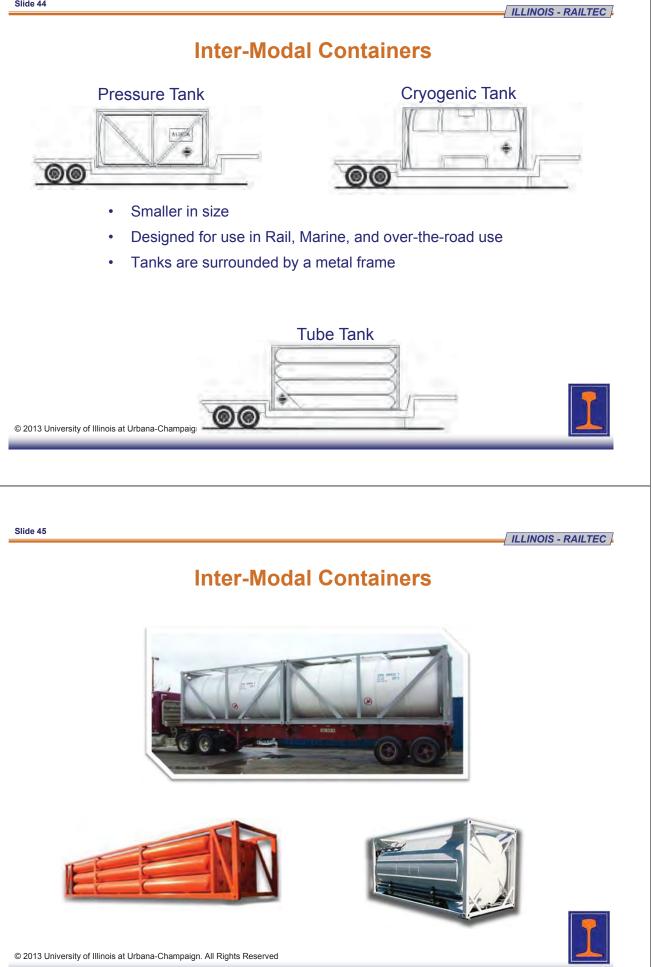
In-Class Group Assignment

• Develop 1) influence diagram and 2) decision tree for a highway hazardous materials transportation risk









Key Databases

 $\ensuremath{\mathbb{C}}$ 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

Slide 47

ILLINOIS - RAILTEC

Pipeline and Hazardous Material Safety Administration Hazardous Material Database

- Accidents reported by motor carriers resulting in at least one of the following:
 - A fatality or injury
 - Unintentional release of hazardous material
 - Evacuation
 - Closure of a highway, main road or secondary road
 - For cargo tanks of at least 1,000 gallons, at least \$500 in damages to the lading retention system

* Information in the following section was obtained from: U.S. DOT PHMSA "Guide for © 2013 University of Illinos a Daring Hazardous Materials Incidents Reports" Revised January 2004.

PHMSA Hazardous Material Database 25. See instructions and enter the appropriate failure codes found at the end of the instructions. Be sure to enter the codes from the list that corresponds to the particular packaging type checked above. Enter the number of codes as appropriate to describe the incident. Enter the most important failure point in line 1. If there are more than two failure points, provide in this format in part VI. 1. What Failed: How Failed: Causes of Failure: Causes of Failure: 2. What Failed: How Failed: _ ___ Failure Codes for Cargo Tank Motor Vehicles – What failed? 118 Flange 101 Air Inlet 105 Bolts or Nuts 119 Frangible Disc 106 Bottom Outlet Valve 120 Fusible Pressure Relief Device or Element 107 Check Valve 121 Gasket 110 Cover 122 Gauging Device 115 Discharge Valve or Coupling 123 Heater Coil 116 Excess Flow Valve 124 High Level Sensor 117 Fill Hole 125 Hose © 2013 University of Illinois Question #25aishan exacerete from form 5800.1

Slide 49

ILLINOIS - RAILTEC

PHMSA Hazardous Material Database

Failure Codes for Cargo Tank	Motor Vehicles – What Failed?
126 Hose Adaptor or Coupling	137 Manway or Dome Cover
127 Inlet (Loading) Valve	138 Mounting Studs
131 Lifting Lug	139 O-Ring or Seals
132 Liner	141 Piping or Fittings
133 Liquid Line	142 Piping Shear Section
134 Liquid Valve	143 Pressure Relief Valve or Device - Non-Reclosing
135 Loading or Unloading Lines	144 Pressure Relief Valve or Device - Reclosing
136 Locking Bar	145 Remote Control Device

PHMSA Hazardous Material Database

Failure Codes for Cargo Tank Motor Vehicles – What failed?				
146 Sample Line	155 Valve Seat			
148 Sump	156 Valve Spring			
150 Tank Shell	157 Valve Stem			
151 Thermometer Well	158 Vapor Valve			
152 Threaded Connection	159 Vent			
153 Vacuum Relief Valve	160 Washout			
154 Valve Body	161 Weld or Seam			

© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

Slide 51

ILLINOIS - RAILTEC

PHMSA Hazardous Material Database

25. See instructions and enter the appropriate failure codes found at the end of the instructions. Be sure to enter the codes from the list that corresponds to the particular packaging type checked above. Enter the number of codes as appropriate to describe the incident. Enter the most important failure point in line 1. If there are more than two failure points, provide in this format in part VI.

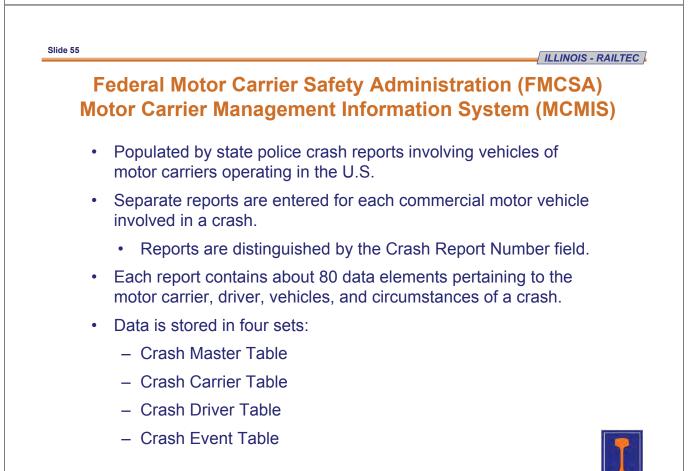
Causes of Failure:		
k Motor Vehicles – How Failed?		
307 Gouged or Cut 308 Leaked		
309 Punctured		
310 Ripped or Torn 311 Structural		
312 Torn Off or Damaged		

PHMSA Hazardous Material Database 25. See instructions and enter the appropriate failure codes found at the end of the instructions. Be sure to enter the codes from the list that corresponds to the particular packaging type checked above. Enter the number of codes as appropriate to describe the incident. Enter the most important failure point in line 1. If there are more than two failure points, provide in this format in part VI. 1. What Failed: _____ Causes of Failure: How Failed: Causes of Failure: 2. What Failed: How Failed: Failure Codes for Cargo Tank Motor Vehicles – Causes of Failure? 501 Abrasion 507 Corrosion - Interior 502 Broken Component or Device 508 Defective Component or Device 503 Commodity Self-ignition 510 Deterioration or Aging 504 Commodity Polymerization 511 Dropped 505 Conveyer or Material Handling Equipment Mishap 512 Fire, Temperature, or Heat 506 Corrosion - Exterior 515 Human Error © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

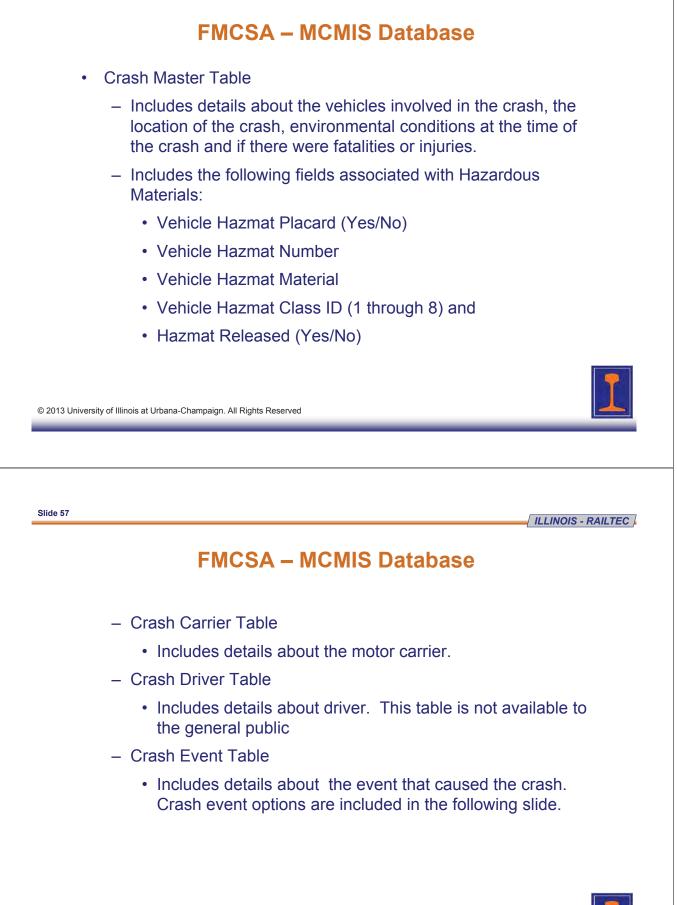
Slide 53

ILLINOIS - RAILTEC

PHMSA Hazardous Material Database


Failure Codes for Cargo Tank Motor Vehicles – How Failed?		
517 Improper Preparation for	525 Incorrectly Sized Component or	
Transportation	Device	
518 Inadequate Accident Damage	526 Loose Closure, Component, or	
Protection	Device	
	527 Misaligned Material, Component, or	
519 Inadequate Blocking and Bracing	Device	
520 Inadequate Maintenance	519 Inadequate Blocking and Bracing	
521 Inadequate Preparation for		
Transportation	520 Inadequate Maintenance	
	521 Inadequate Preparation for	
522 Inadequate Procedures	Transportation	
523 Inadequate Training	522 Inadequate Procedures	
524 Incompatible Product	523 Inadequate Training	

Slide 54


PHMSA Hazardous Material Database

Failure Codes for Cargo Tank Motor Vehicles – How Failed?			
524 Incompatible Product	530 Overpressurized		
525 Incorrectly Sized Component or			
Device	531 Rollover Accident		
526 Loose Closure, Component, or	532 Stub Sill Separation from Tank		
Device	(Tank Cars)		
527 Misaligned Material, Component, or			
Device	533 Threads Worn or Cross Threaded		
528 Missing Component or Device	536 Vandalism		
	537 Vehicular Crash or Accident		
529 Overfilled	Damage		

© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

FMCSA – MCMIS Crash Event Options

1 = Non collision ran off road	12 = Collision involving pedestrian
	13 = Collision involving motor vehicle in
2 = Non collision jackknife	transport
3 = Non collision overturn (rollover)	14 = Collision involving parked motor vehicle
4 = Non collision downhill runaway	15 = Collision involving train
5 = Non collision cargo loss or shift	16 = Collision involving pedalcycle
6 = Non collision explosion or fire	17 = Collision involving animal
7 = Non collision separation of units	18 = Collision involving fixed object
8 = Non collision cross	19 = Collision with work zone maintenance
median/centerline	equipment
	20 = Collision with other movable object
9 = Non collision equipment failure	(Substitutes for previous "Collision involving
(brake failure, blown tires, etc.)	other object")
10 = Non collision other	21 = Collision with unknown movable object
11 = Non collision unknown	98 = Other

© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

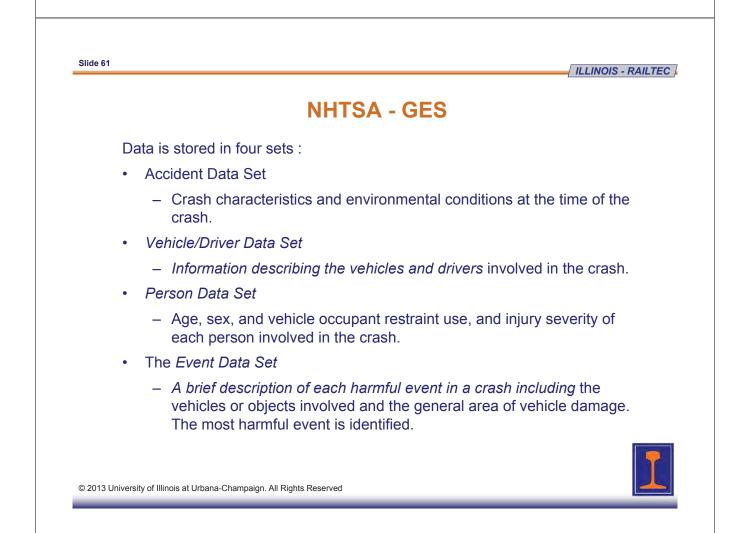
Slide 59

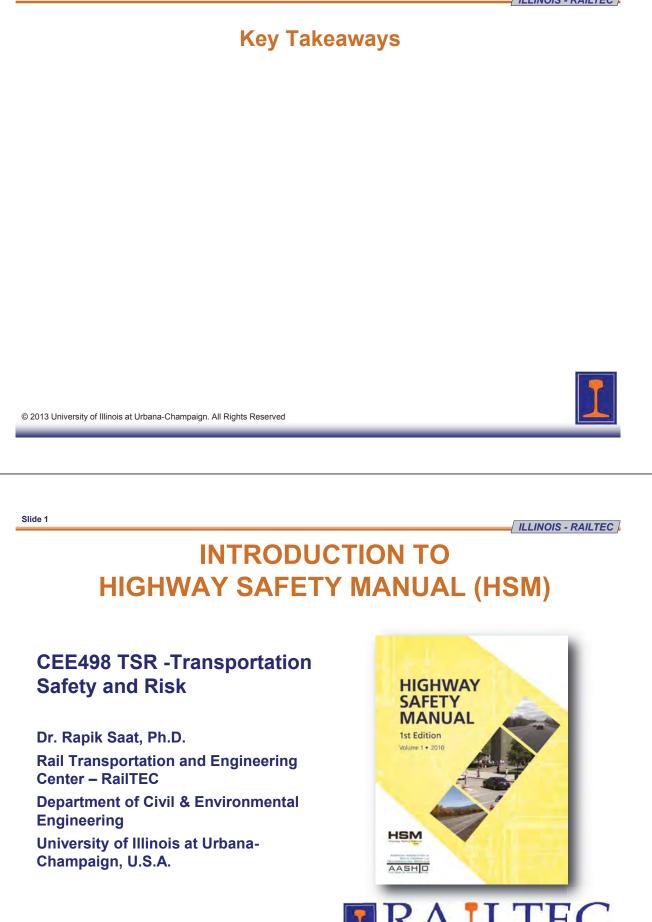
ILLINOIS - RAILTEC

National Highway Traffic Safety Administration (NHTSA) General Estimates System (GES)

- Obtains its data from a nationally representative probability sample selected from the estimated 6.3 million police-reported crashes which occur annually.
- Includes crashes resulting in a fatality or injury or major property damage
- Provides data about all types of crashes involving all types of motor vehicles including:
 - Highway safety problem areas
 - A basis for regulatory and consumer information initiatives
 - The basis for cost and benefit analyses of highway safety initiatives

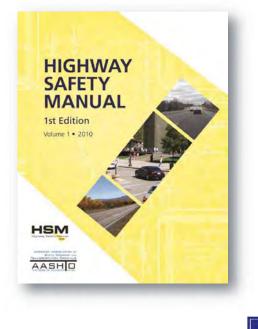
* NHTSA GES information obtained from National Automotive Sampling System (NASS) General Estimates System (GES) Analytical User's Manual (1988 – 2003). Report accessed at: ftp://ftp.nhtsa.dot.gov/GES/Ges_Doc/

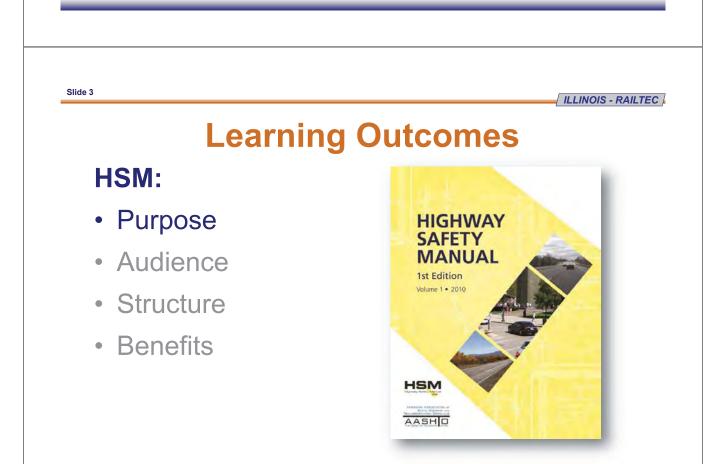



NHTSA - GES

- Crashes occurring in the same survey year have an equal chance of being selected.
 - National estimates and probable errors associated with the estimates can be calculated.
- Three stage selection process:
 - Stage 1: Primary Sampling Units (PSUs)
 - Sample of 1,195 geographic areas grouped into 14 categories
 - Stage 2: Selection of Police Jurisdictions
 - Probability sample of jurisdictions in each PSU weighted based on number of crashes investigated
 - Stage 3: Selection of Police Accident Reports (PARs)
 - · PARs are stratified by the data collector into 6 groups

© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved


ILLINOIS AT URBANA-CHAMPAIGN


Learning Outcomes

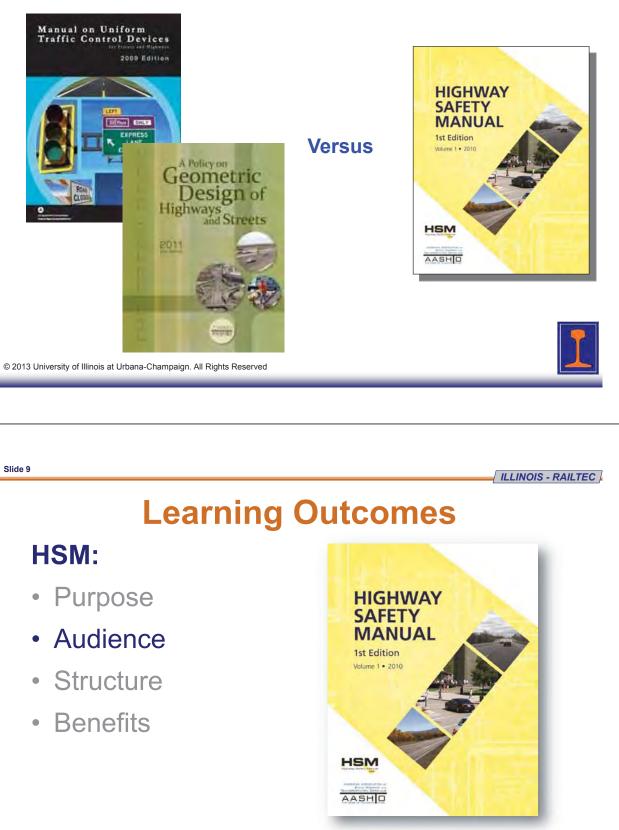
HSM:

- Purpose
- Audience
- Structure
- Benefits

© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

HSM Provides Methods for Developing Effective Roadway Safety Management Program

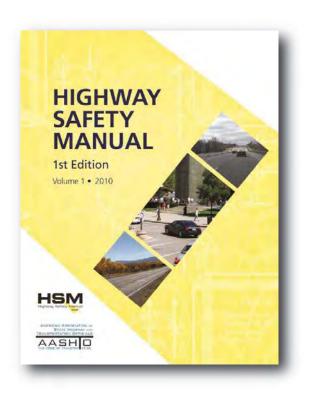
- · Identifying sites with potential for safety improvement
- Diagnosing conditions at the site
- Evaluating conditions and identifying potential treatments at the sites
- Prioritizing and programming treatments
- Evaluating the effectiveness at reducing crashes of the programmed treatments

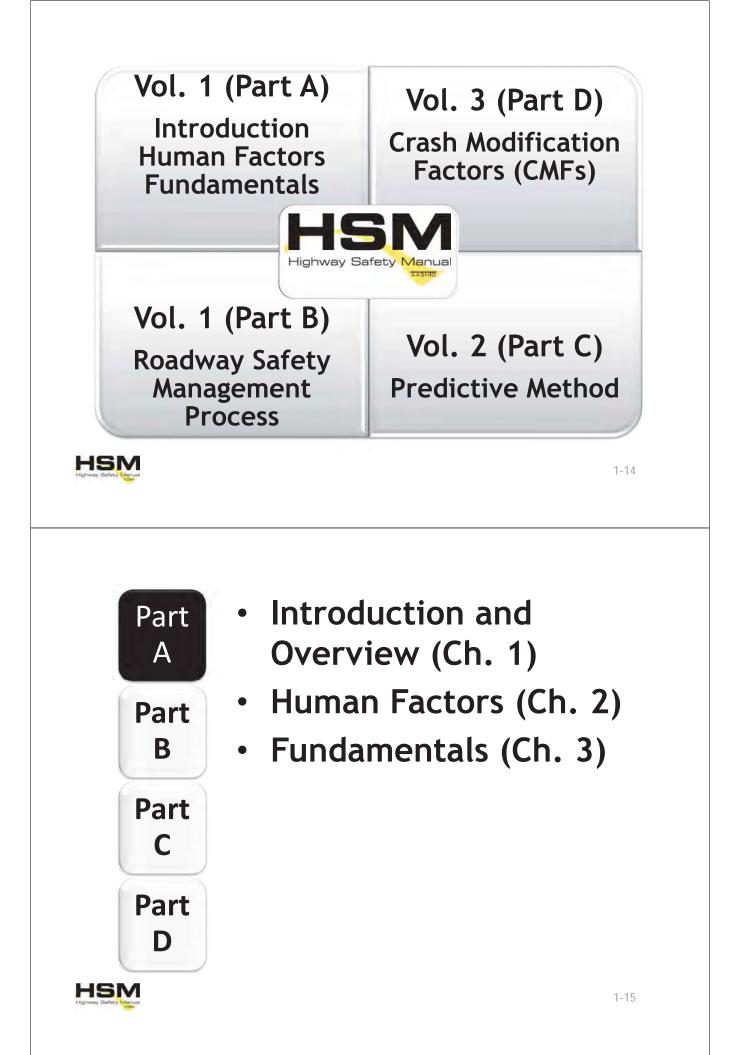

_	iversity of Illinois at Urbana-Champaign. All Rights Reserved	
Slide 5		ILLINOIS - RAILTEO
	HSM Provides Predictive Method to Estim Crash Frequency and Severity	ate
•	To make informed decisions throughout the project development process:	t
	– Planning	
	– Design	
	- Operations	
	– Maintenance	
•	E.g. screening potential locations for improvement choosing alternative roadway designs	and

lide 6	ILLINOIS - RAILTEC
	HSM Provides A Catalog of Crash Modification Factors (CMFs)
•	Include a variety of geometric and operational treatment types
•	Developed using high-quality before/after studies
2013 Un	iversity of Illinois at Urbana-Champaign. All Rights Reserved
_	
ilide 7	ILLINOIS - RAILTEC
	How is the HSM Applied?
•	Identifying sites with the most potential for crash frequency or severity reduction
•	Identifying factors contributing to crashes and associated potential countermeasures to address these issues
•	Conducting economic appraisals of potential improvements and prioritizing projects
•	Evaluating the crash reduction benefits of implemented treatments
•	Estimating potential effects on crash frequency and severity of planning, design, operations, and policy decisions

┶

The HSM and Other Documents


HSM Audiences Practitioners at the state, county, metropolitan planning organization (MPO), or local level - Such as? © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved Slide 11 ILLINOIS - RAILTEC **Learning Outcomes HSM:** • Purpose HIGHWAY SAFETY Audience MANUAL **1st Edition** Volume 1 • 2010 • Structure Benefits HSM AASHO

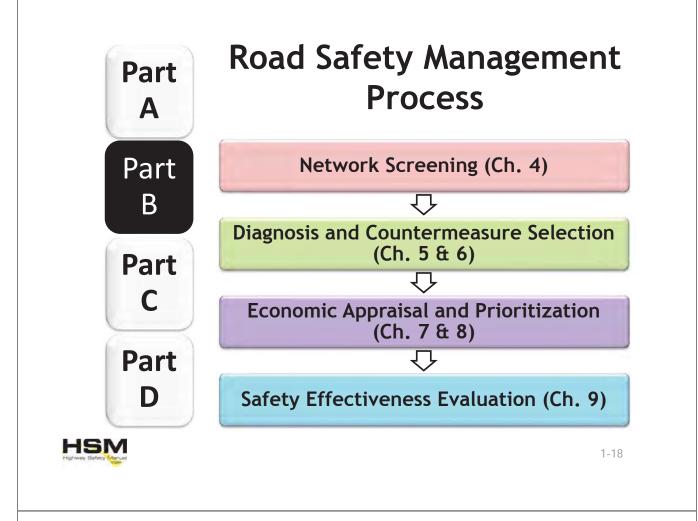

Key Educational Resource NCHR NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM **REPORT 715 Highway Safety Manual Training Materials** http://www.trb.org/Main/Blurbs/167185.aspx © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

HSM

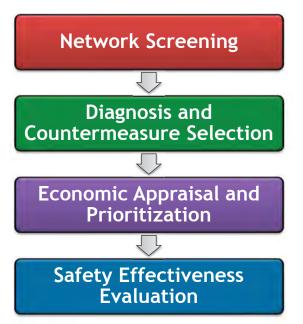
Content and **Structure**

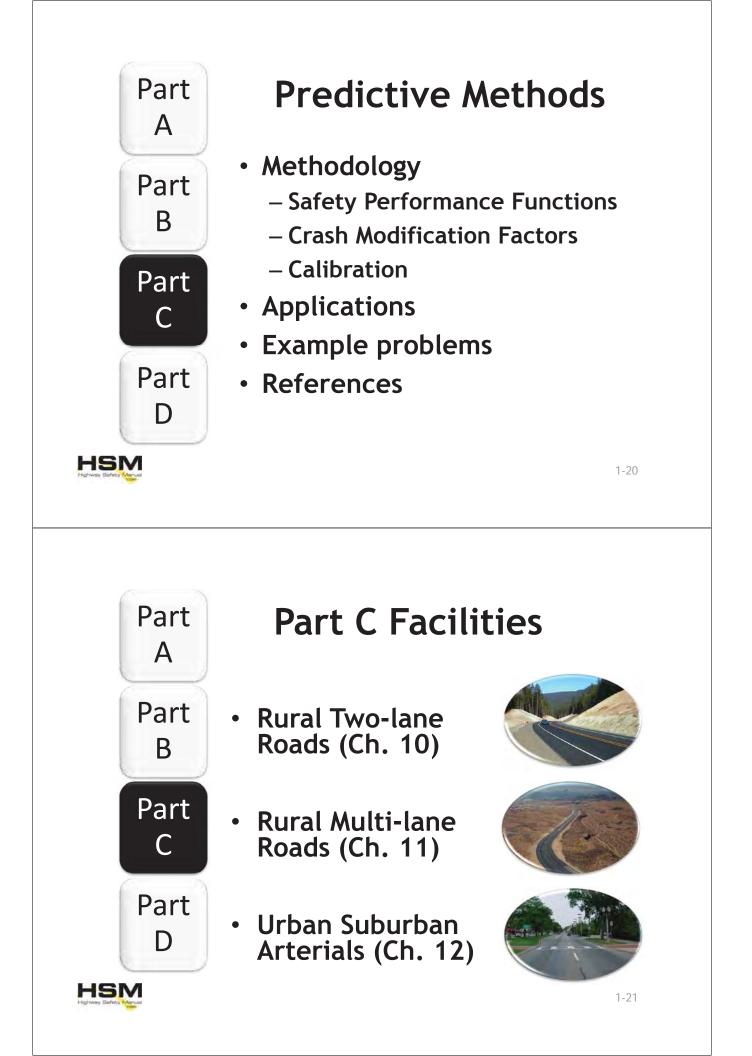
HSM Vol. 1 (Part A) Knowledge Building

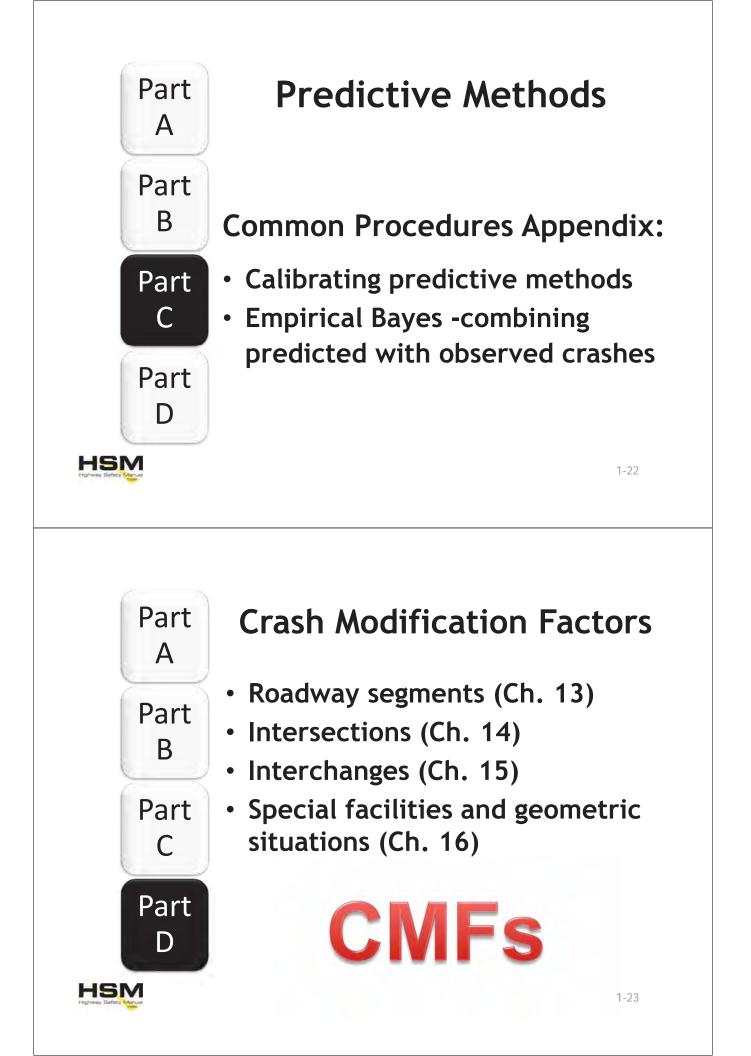
- Professional staff and consultants
- Safety partners (law enforcement, medical)
- External stakeholders
- General public
- Elected officials



Vol. 1 (Part A) Valuable Safety Education


- Road Safety Audit expertise
- Design engineers and traffic engineers
- Public information programs for projects
- Vol. 1 (Part A) Chapter 3
 - Highway and traffic safety fundamentals
 - Common definitions, terminology
- Vol. 1 (Part A) Chapter 2
 - Human factors safety fundamentals




Vol. 1 (Part B) Programming and Policy Implementation

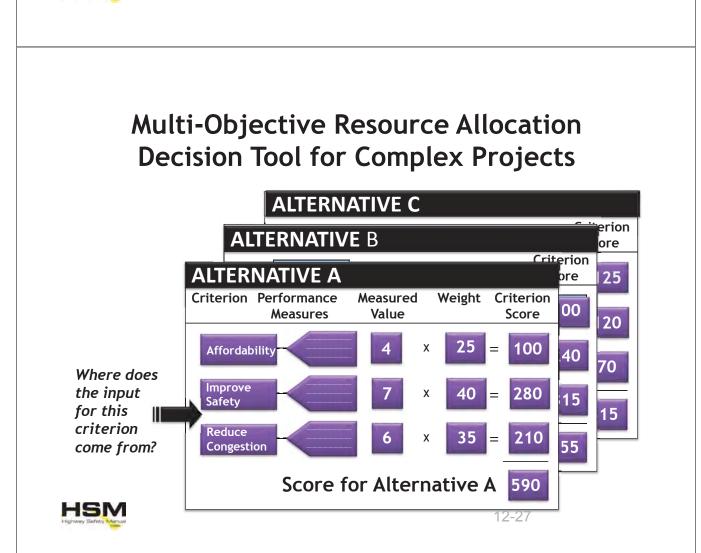
- Identification of sites for potential crash reduction
- Crash pattern analysis
- Best solutions
- Resource allocation
- Measuring success
- Improvement over time

Vol. 2 (Part C) and Vol. 3 (Part D) Project Development

Two-Lane to Four-Lane Corridor Studies

- Vol. 2 (Part C) -- Chapter 10
 - Establish purpose and need
 - Assess performance of 'no-build'
- Vol. 2 (Part C) Chapter 11
 - Evaluate and compare safety performance of alignment and cross section alternatives
 - Estimate performance of the preferred 'build'
 - Calculate benefits (crash reductions) of preferred

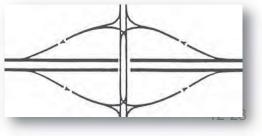
Urban Arterial Corridor Studies


•

- Vol. 2 (Part C) -- Chapter 12
 - Establish purpose and need
 - Assess safety performance of 'no-build'
 - Vol. 2 (Part C) Chapter 12
 - Evaluate safety performance of cross section and access alternatives
 - Estimate safety performance of preferred 'build'
 - Calculate benefits (crash reductions) of preferred versus no-build

12-26

HSM Highway Safety Manual



Interchange Warrant Studies (Rural Multilane Highways)

- Vol. 2 (Part C) Chapter 11 -Establish purpose and need -Assess performance of 'no-build'
- Vol. 3 (Part D) Chapter 15

 Estimate conversion performance
 Estimate performance of preferred 'build'
 Calculate conversion benefits (crash

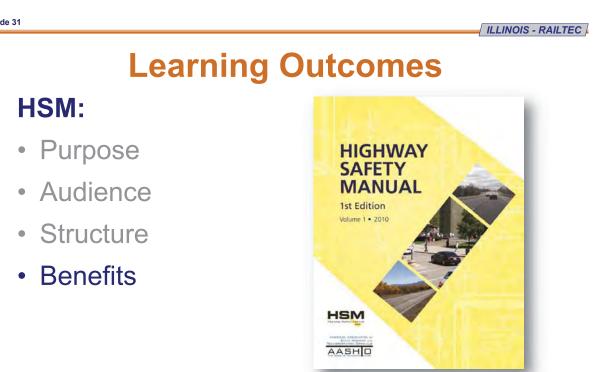
reductions)

Intersection Signal Warrant Program Implementation

- Vol. 1 (Part B)
 - Prioritize warranted signal implementation

- Vol. 2 (Part C) and Vol. 3 (Part D)
 - Confirm positive benefits of implemented signals; including alternative phasing plans
 - Compare signalization with roundabout implementation for warranted locations

HSM


Rural Highway Safety Program Development and Implementation

- Rumble strip applications
- Cable median barrier implementation
- Shoulder paving and improvement initiatives
- Guardrail upgrade programs

- Vol. 1 (Part B)
 - Chapter 4 screen network (e.g., 5% locations) for candidate sites
 - Chapters 5 and 6 estimate countermeasure effectiveness
 - Chapters 7 and 8 program and prioritize
 - Chapter 9 validate and improve program
- Vol. 3 (Part D)
 - Chapter 14 effectiveness of Intersection-related programs
 - Chapter 15 effectiveness of road segment related programs

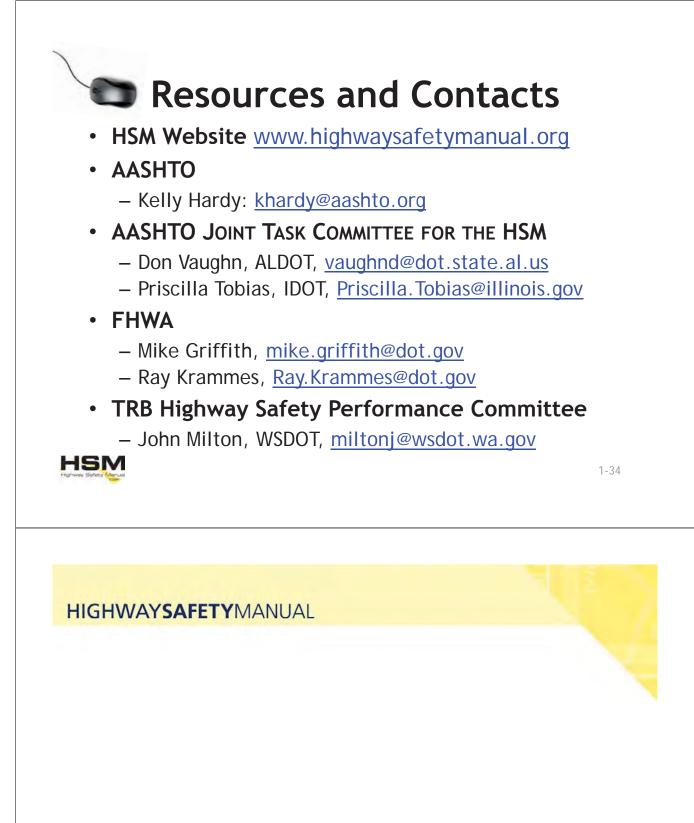
12-30

Slide 31

The Value of the HSM

- Provides proven and vetted science-based approach to quantifying safety effects of decisions and actions we contemplate
- Provides common knowledge base, language and basis for reasoned safety judgments
- Allows incorporation of safety to same level of importance as other factors
- Does not increase risk of tort liability

It does not force or require you to do anything, it merely helps you do a better job



12-32

Companion Software and Websites

HSM Part	Supporting Tool
Part B: Roadway Safety Management Process	SafetyAnalyst www.safetyanalyst.org
Part C:	IHSDM
Predictive Methods	www.ihsdm.org
Part D:	FHWA CRF/CMF
Crash Modification	Clearinghouse
Factors	www.cmfclearinghouse.com

HSM Vol. 1 (Part A): Chapters 2 & 3 MODULE 2. HSM FUNDAMENTALS AND TERMS

Learning Outcomes

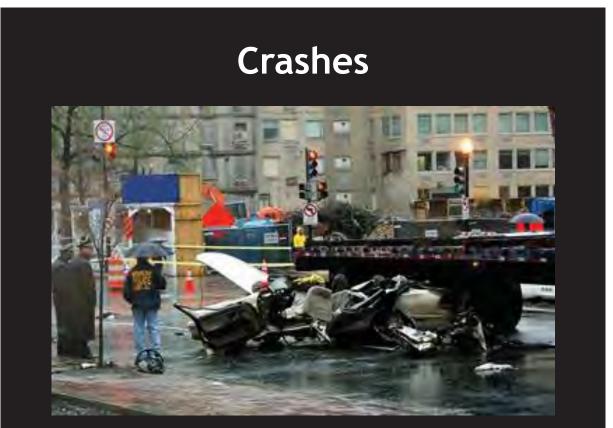
Overview of HSM key concepts:

- Measuring safety by crashes
- Data needs
- Evolution of crash estimation methods
- Predictive methods
- Evaluating safety effectiveness

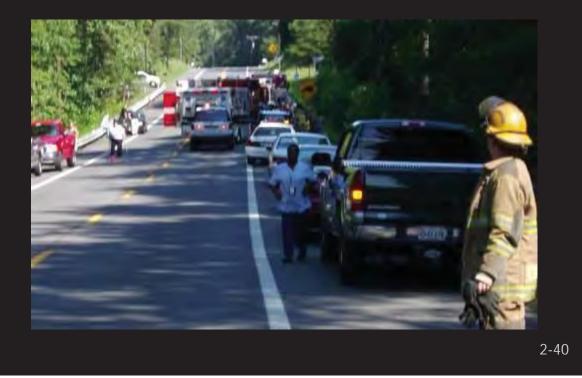
2-36

What is Safety?

The HSM uses crashes as a *measure of safety*

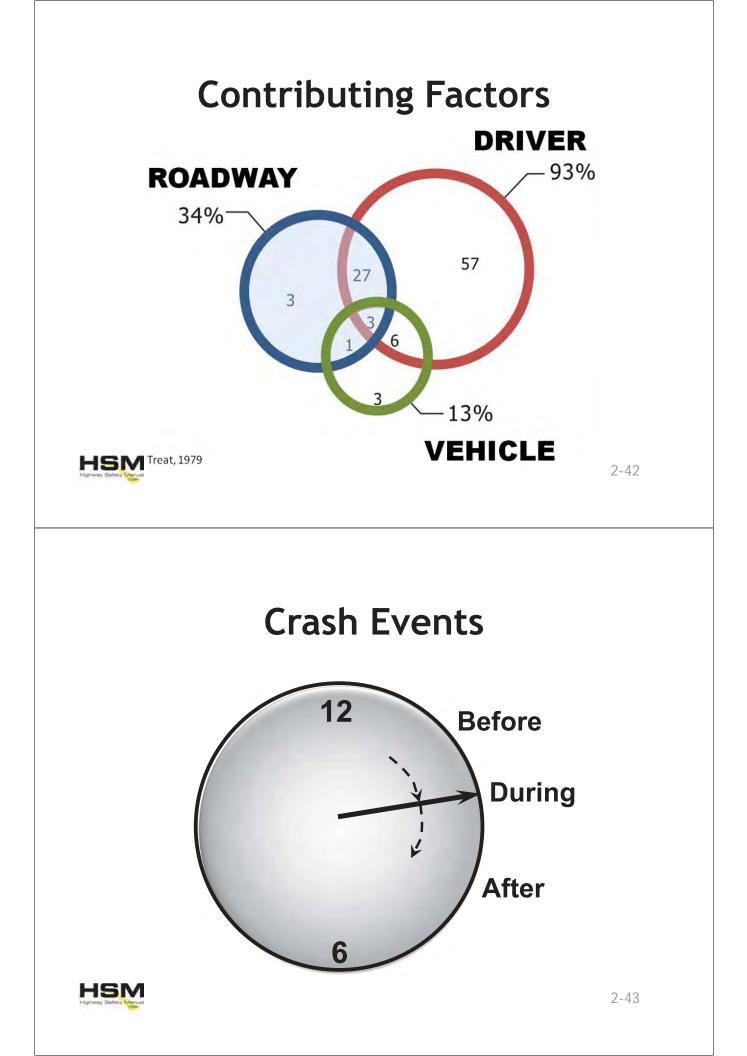

Measuring Safety

- Perception
- Values vary among observers


SUBJECTIVE SAFETY OBJECTIVE SAFETY

- Quantifiable
- Independent of the observer

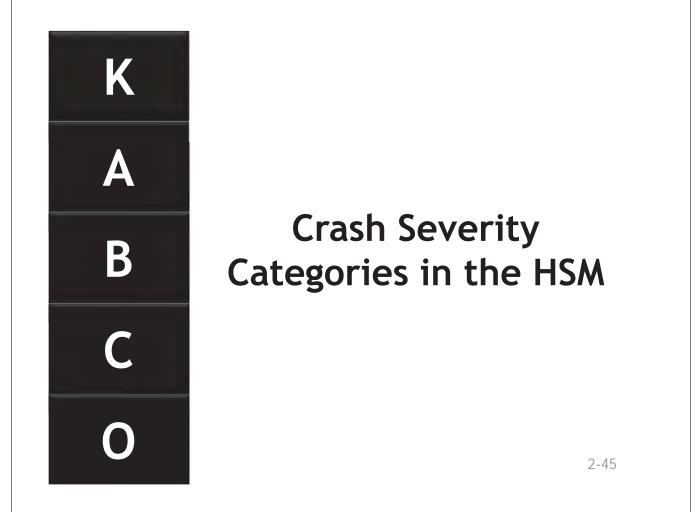
Random Events

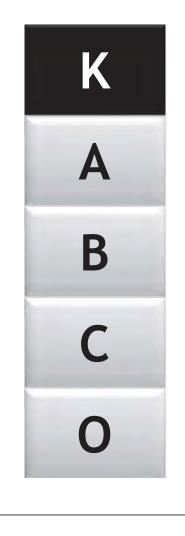


Rare Events

Relative Proportion of Crash Events

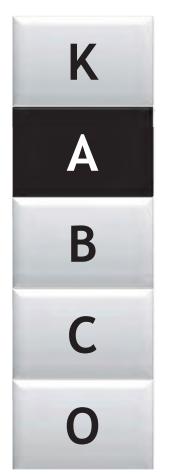
Relative Proportion of Events



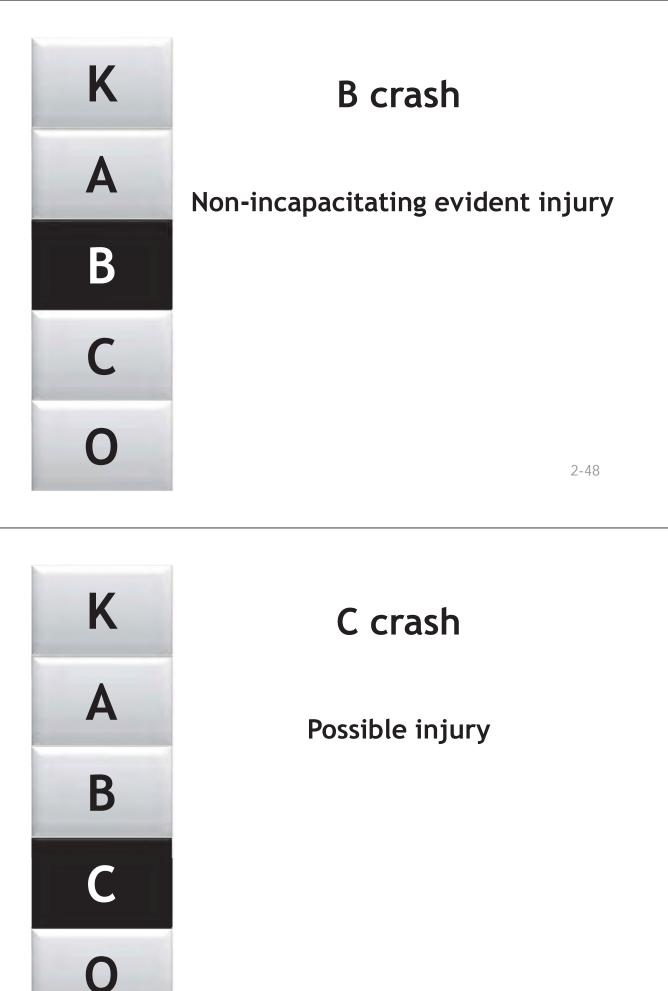

Haddon Matrix

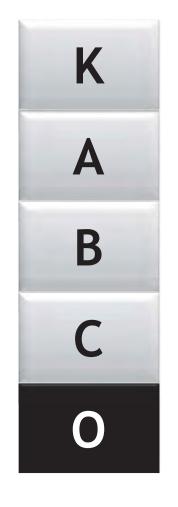
PERIOD	Contributing Factor							
	Human	Vehicle	Environment					
Before crash								
During crash								
After crash								

2-44



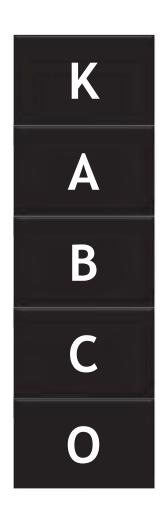
K crash


One or more persons died within 30 days of the crash

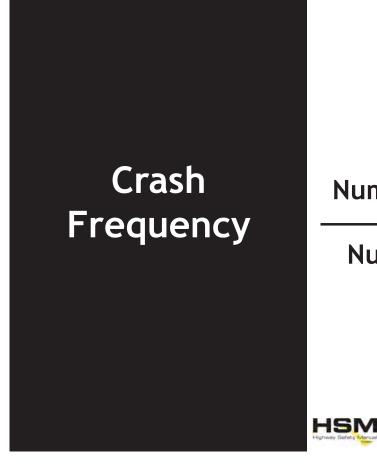

2-46

A crash

Incapacitating injury



O crash

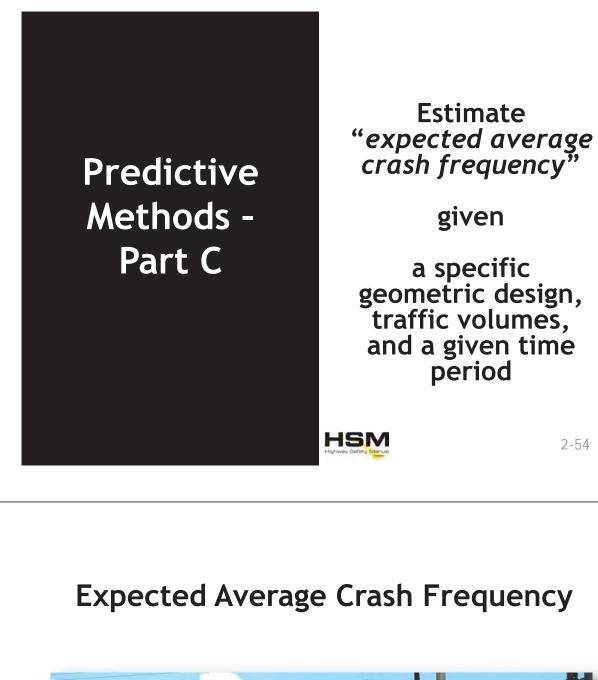

No injuries - reportable property damage resulted from crash

2-50

Crash Severity

Most severe injury controls level of crash severity

Number of Crashes


Number of Years

2-52

Crash Estimation

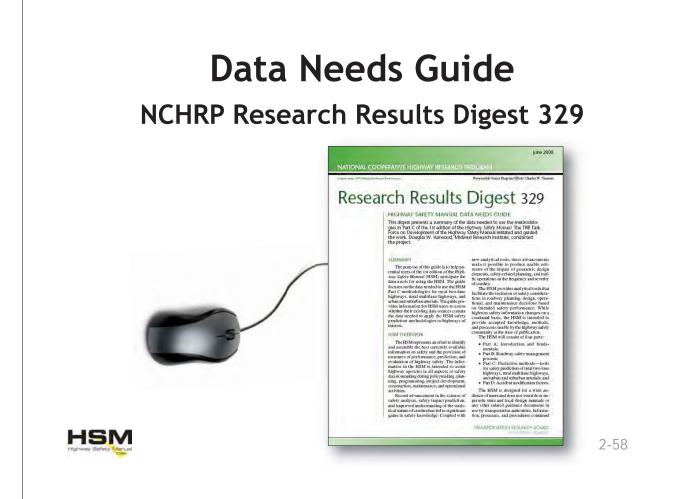
Forecast / Predict Crash Frequency

Crash Frequency = Short Term Measure

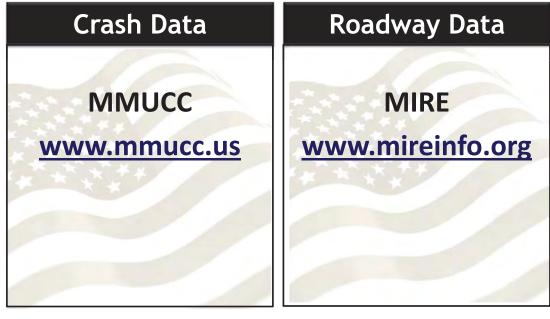
2-54

Crash Evaluation

Effectiveness After Implementation



2-56

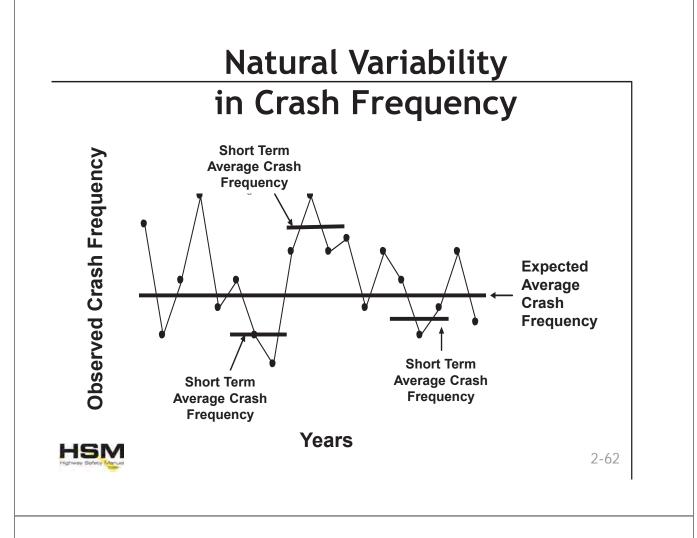

Data Needs

- 1. Crash data
- 2. Facility data
- 3. Traffic volume data

National Programs

<section-header><section-header><section-header><section-header><section-header>

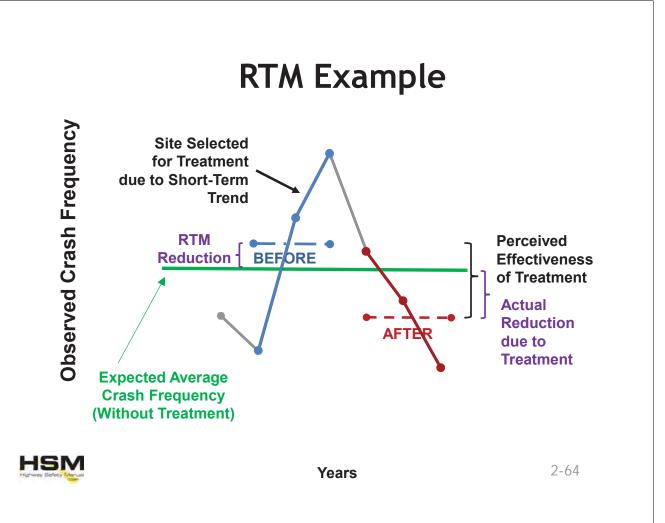
- 1. Quality and accuracy
- 2. Reporting thresholds
- 3. Severity indeterminacy
- 4. Jurisdiction differences



2-60

Limitation: Randomness and Change

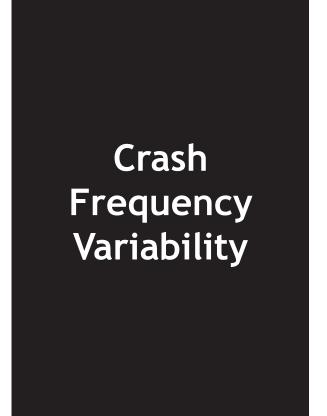
- 1. Natural crash frequency variation
- 2. Roadway variations
- 3. Crash frequency variability and changing site conditions
- 4. Regression-tothe-mean and bias



Regression-tothe-Mean (RTM)

RTM Bias

If we do not account for RTM, we cannot say the crash difference is due to the treatment



Consider Site Changes Over Time:

- Traffic volume
- Weather
- Traffic control
- Geometric design

Conflicts with Changing Site Conditions:

Use predictive methods in Part C to estimate crash frequency

HSM Highway Balety Marias

2-66

Evolution of Crash Estimation

Improvements in statistical sophistication and changes in thinking

- 1. Observed Crash Frequency and Crash Rate Methods
- 2. Indirect/ Surrogate Safety Measures
- 3. Statistical Methods

2-68

1. Observed Crash Frequency and Crash Rate Methods

Crash Rate

Average Crash = Frequency in a Period Exposure in the Same Period

1. Observed Crash Frequency and Crash Rate Methods

Advantages

- Intuitive
- Acceptance
- Limited alternatives

Limitations

- Assumes a linear relationship between crash frequency and exposure
- Inability to account for changes in geometric design and volumes and cannot compare design alternatives

2-70

Example for Crash Rates

Before			After				
Year	No. Crashes	AADT	Rate	Year	No. Crashes	AADT	Rate
1988	13	2,900	2.11	1992	30	10,618	1.33
1989	11	2,900	1.79	1993	30	13,200	1.07
1990	13	3,050	2.01	1994	36	14,300	1.19
1991	23	3,400	3.19	1995	40	13,900	1.36
	Average R	ate = 2.28	3		Average F	Rate = 1.24	

Gambling Introduced in 1992

Example Provided by Jake Kononov, Ph.D., P.E., Colorado DOT

Crash Rate Conclusion?

Before Gambling Average Rate = 2.28

Highway Alignment and Typical Cross-Section not Changed

After Gambling Average Rate = 1.24 but the Percent of Alcohol Related Crashes increased 500%

Possible Conclusion: Is Drinking and Driving in Concert with Gambling Good for Safety?

Probably Not but Crash Rates Say Otherwise

2-72

Example Provided by Jake Kononov, P.E., Ph.D., Colorado DOT

2. Indirect/ Surrogate Safety Measures

HSM

•Based on events preceding crashes

•Presume causal link to expected crash frequency

Conflict study

•Data are available but unproven relationship between surrogate measure and crash estimation

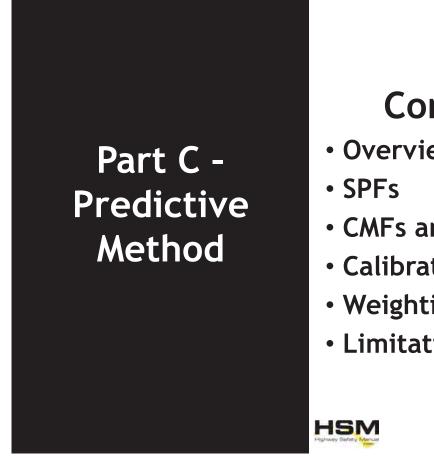
2-74

3. Statistical Methods Reliably Estimate Expected Average Crash Frequency for:

Existing projectsDesign projects

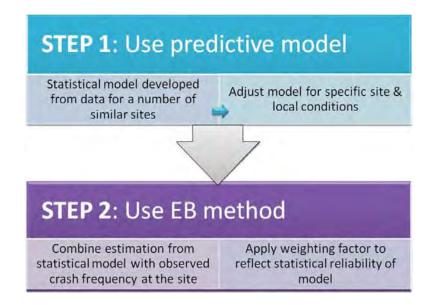
Model Reliability -Function of:

Original data "fit"Local data model calibration



2-76

- 1. Empirical Bayes (EB)
- 2. Hierarchical Bayes
- 3. Full Bayes



Content

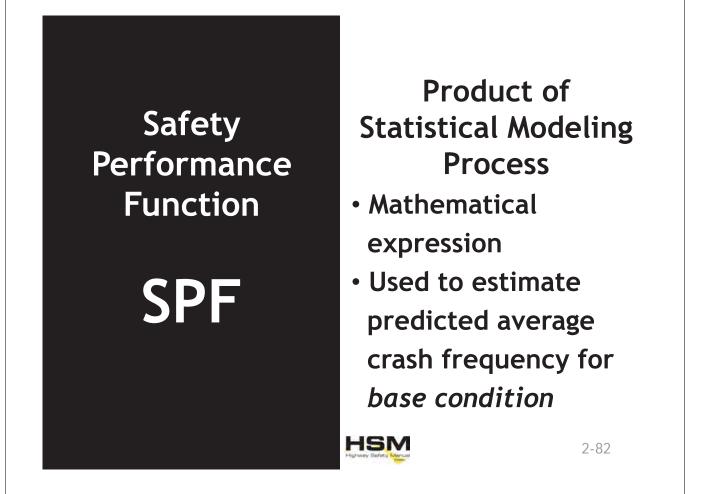
- Overview
- CMFs and CRFs
- Calibration
- Weighting with EB
- Limitations

2-78

Predictive Method Elements

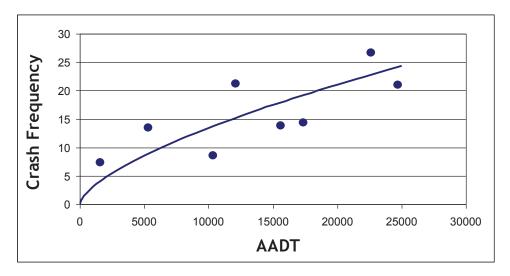
Predictive Method Advantages

- RTM bias
- Predictive relationships
- Non-linear relationship: crashes and exposure
- Negative binomial distribution


2-80

Base Condition

SPF Example Condition


- 2-lane rural highway
- 12-ft lanes
- 6-ft shoulders
- Level terrain
- Clear, level roadside

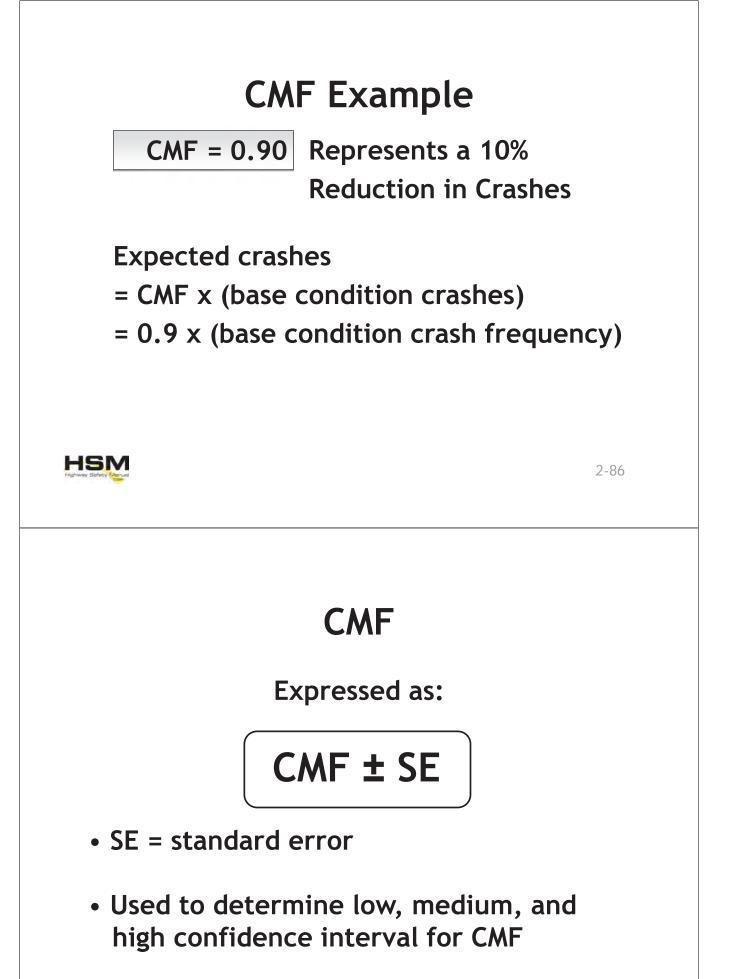
Crash-Volume Relationship

Can Be Non-Linear

SPFs

- Calibrate SPFs for LOCAL conditions
- Weight with EB Method

Crash Modification Factor


CMF

Expected Crashes = CMF x (base condition crashes)

You can remember it as "M is for multiply"

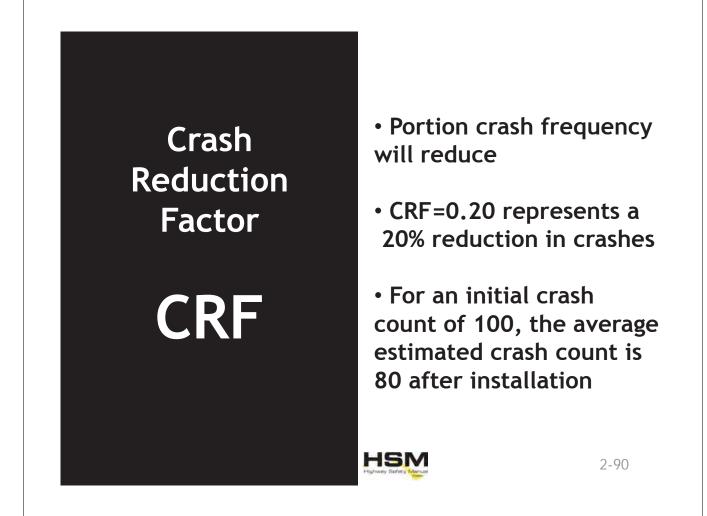
 $CMF \cong \frac{Expected average \ crash \ frequency with \ condition' \ b'}{Expected \ average \ crash \ frequency \ with \ condition' \ a'}$

CMF and Vol. 2 (Part C)

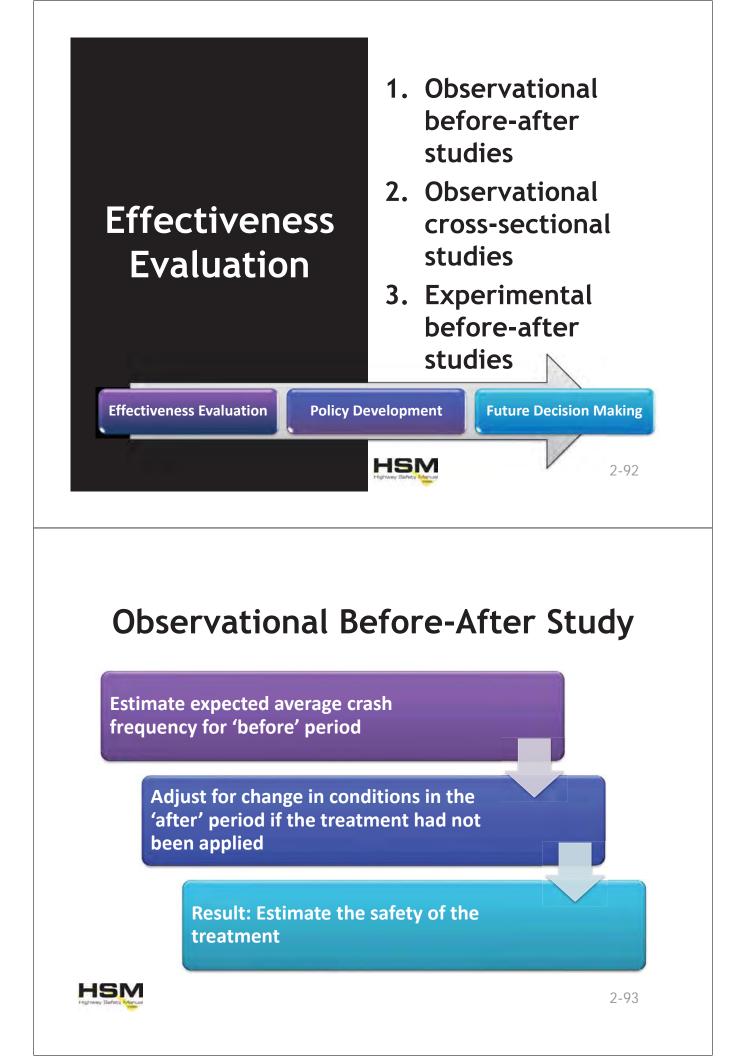
 $N_{predicted} \cong N_{SPF x} \partial (CMF_{1x} \partial CMF_{2x} \partial ... \partial CMF_{yx}) \partial C_{x}$

N_{SPF} = Estimated crash frequency from SPF for base condition CMF_{ix} = Crash modification factors

C_X = Calibration factor



- Known base conditions
- Setting and road type
- AADT range
- Crash type and severity



HSM Statistical Methods Application

- Expected average crash frequency
- Calibration need
- Engineering judgment
- Crash data errors and limitations
- Development of SPFs and CMFs requires skill / knowledge

Observational Cross-Sectional Study

Compare sites with and without treatment over same time period

Slide 95

ILLINOIS - RAILTEC

Key Takeaways

INTRODUCTION TO PIPELINE TRANSPORTATION SAFETY AND RISK

CEE498 TSR -Transportation Safety and Risk

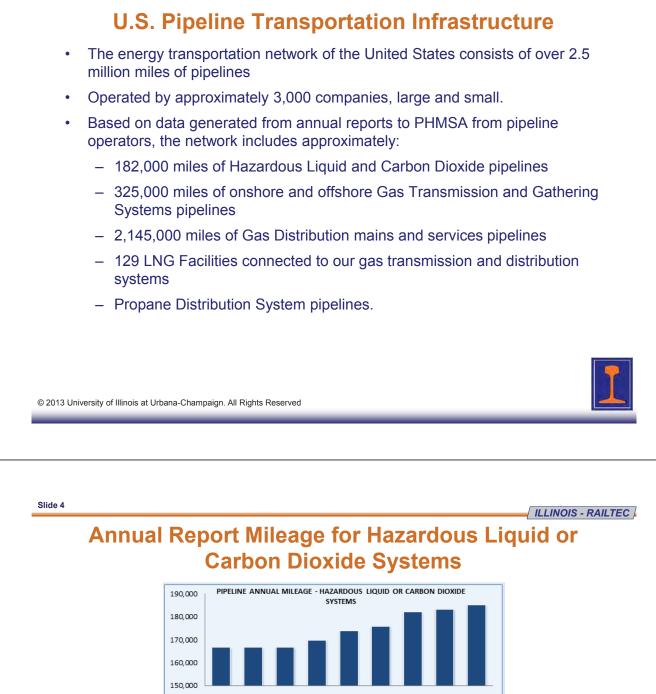
Dr. Rapik Saat, Ph.D. Rail Transportation and Engineering Center – RailTEC

Department of Civil & Environmental Engineering

University of Illinois at Urbana-Champaign, U.S.A.

© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

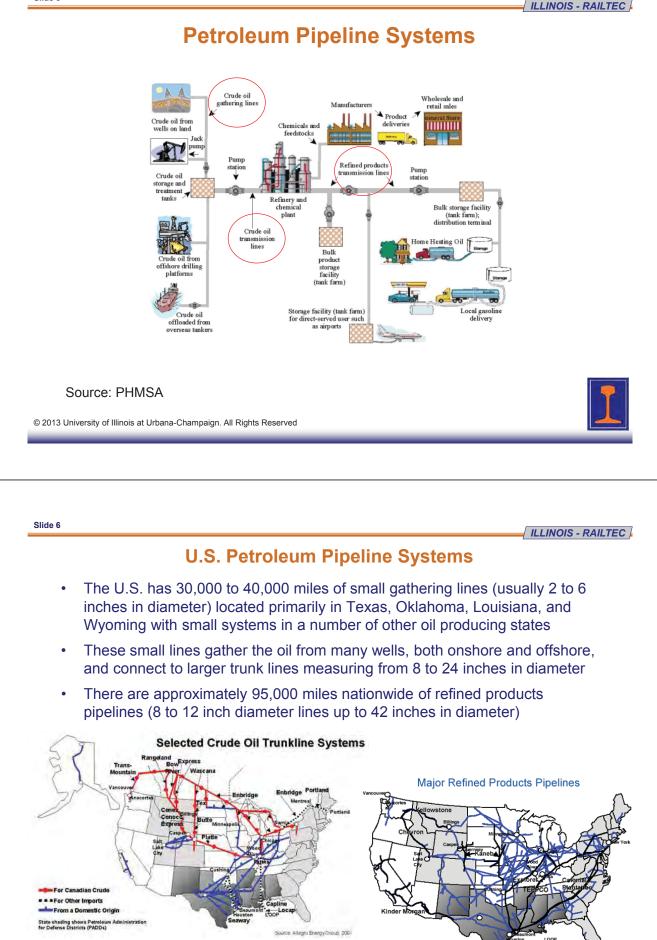
Slide 2

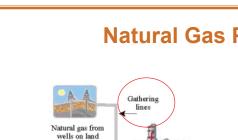

ILLINOIS - RAILTEC

Learning Outcomes

At the end of this lecture students will be able to:

- 1. Recognize the extent of pipeline transportation infrastructure in the U.S.
- 2. Identify pipeline release incident risk factors
- 3. Understand recent U.S. pipeline safety statistics





Source: PHMSA

Source: Allegro Energy Group, 2001

Gas processing and treatment

plant

Gas

Gas storage facility

Natural Gas Pipeline Systems

Compressor station * 0

Natural gas

transmission line

A

ø

Electric power

generating station

Compressor station

Direct served customers

Large industrial

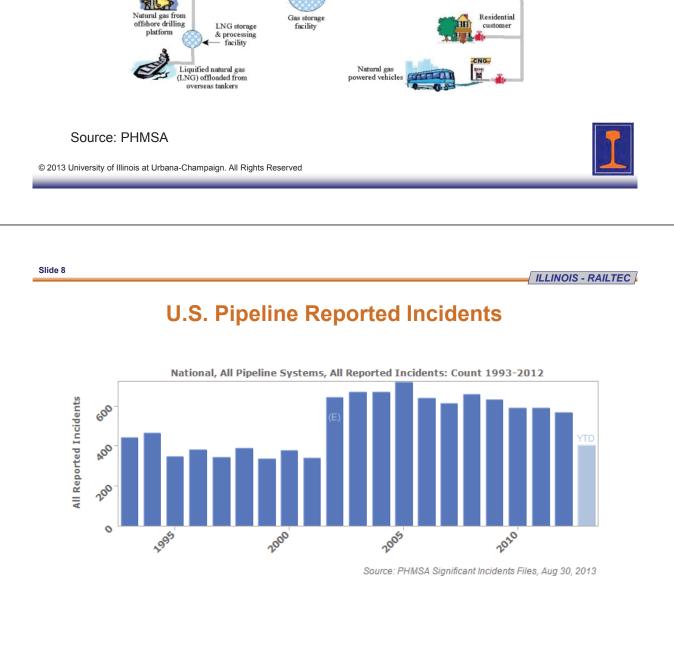
customer

R

City Gate

Odorant is added to the gas at the city gate

Smaller

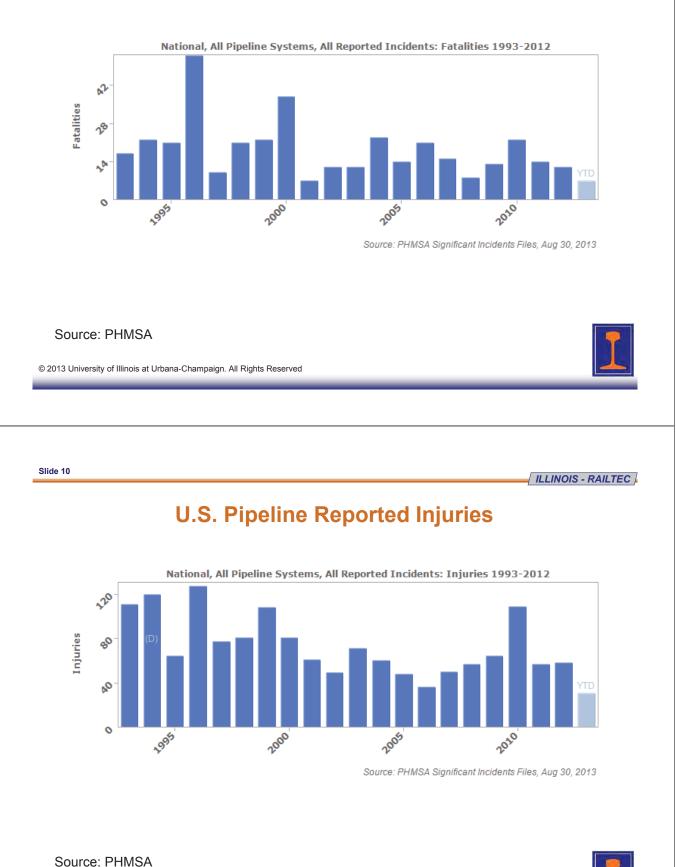

manufacturer

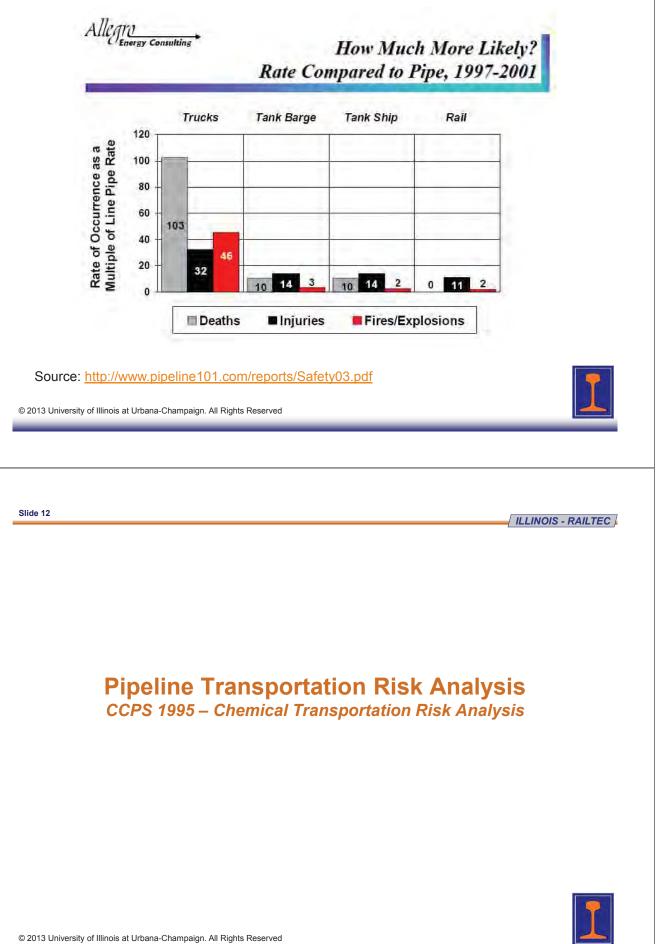
Commercial

customer

Local gas distribution system

seperal Store





© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

Source: PHMSA

U.S. Pipeline Reported Fatalities

Pipeline Incidents - Initiating and Contributing Causes

Human errors	Equipment failures	System or procedural failures	External events
Pigging operations Hot tapping Slug operation Repair/replacement of a section of line Startup Changing operating conditions Shutdown Preparation for maintenance Valve operation	Thermal expansion Internal corrosion External corrosion Bad welds Fatigue Failure of cathodic protection Cyclic stress Galvanic corrosion Internal erosion Control system failure Brittle fracture Support failure Construction defects Overpressure Polymerization Plugging or fouling	Inspection Operation Startup/shutdown Communication Maintenance Leak detection Emergency temporary repair Material specification and testing Modifications	Accidental excavation Post digging Wind (above-ground lines) Earthquake Subsidence Avalanche Flood/scouring Lightning Fire Vandalism/sabotage Freezing/thawing Rail/road crossing (pipebridge or sleeved casing) Railroad derailment Mining Anchor dragging Mooring pole

© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

Slide 14

ILLINOIS - RAILTEC

Pipeline Incidents – General Categories

- External mechanical interference
- Corrosion defects
- Material failure/construction defect
- Miscellaneous causes

	Rate Per 1000 Mile-Years	
Cause	US ¹	Europe ²
External mechanical interference	0.68	0.67
Corrosion	0.20	0.17
Material failure/construction defect	0.26	0.20
Other	0.10	0.08
Total	1.25	1.12

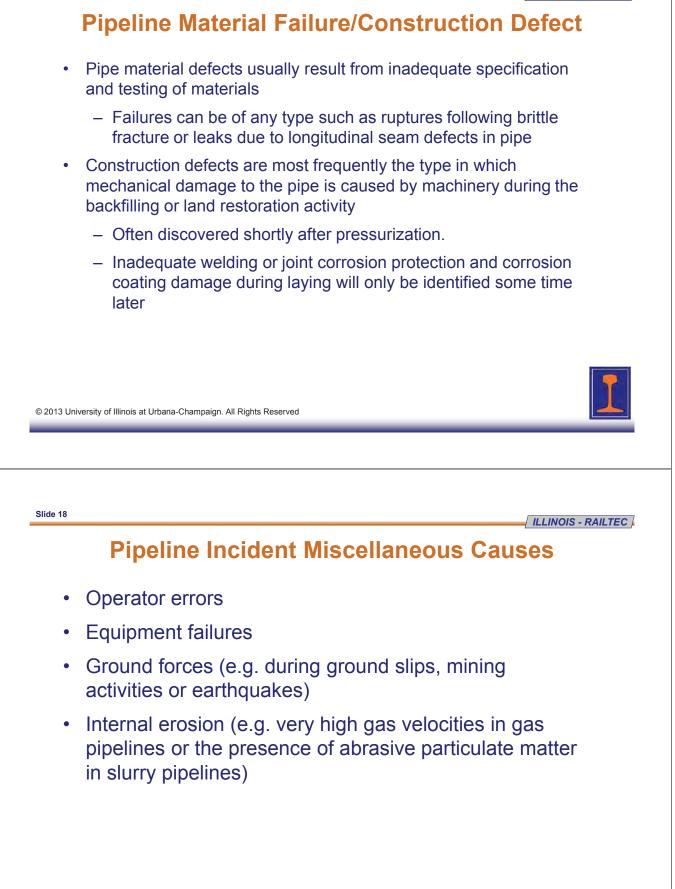
¹ Jones, 1986 (excluding 1983 data); Transportation Data Source 4-9

² European Gas Pipeline Incident Data Group, 1988; Transportation Data Source 4-14

Pipeline External Mechanical Interference

- Being damaged by excavators or other equipment in use by other utility or construction companies
- Damage following derailments on railroads
- Hot tap in error by other utilities
- Damage during deep plowing by farmers
- Damage during construction of land drainage
- Damage at river crossings by dragging of ships anchors
- Damage during the construction of barge pole moorings

© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved	b
--	---



ILLINOIS - RAILTEC

Pipeline Corrosion Defects

- External corrosion due to moisture in the ground
 - Small pinhole failures caused by pitting (localized galvanic corrosion) leads to small leaks that are often difficult to detect but that gradually grow in size over a period of time
 - More generalized corrosion leading to a reduction in pipe wall thickness over a plane area that can eventually fail catastrophically under pressure, leading to a large scale release
- Internal corrosion due to the corrosive nature of the products being transported
 - Leads to similar failure mechanisms as external corrosion
 - Failures are generally caused by the formation of acids resulting from the presence of water, carbon dioxide or sulphur compounds in the substances being transported

Parameters Influencing Accident Rates

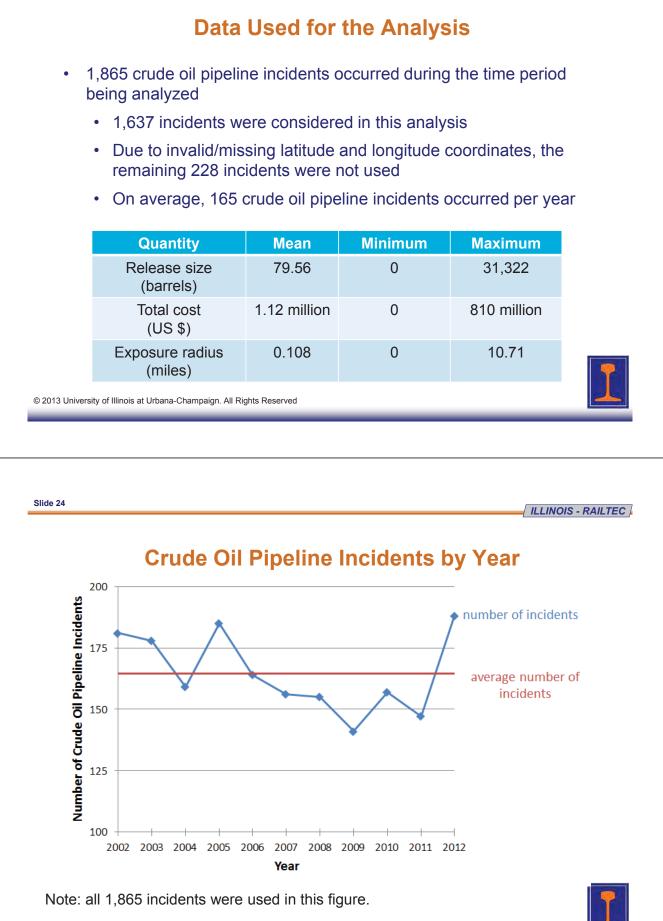
- Pipeline age
- Pipeline design and standards
- Corrosion
- Maintenance
- Fatigue loading
- Third party activities near pipelines
- Other miscellaneous factors

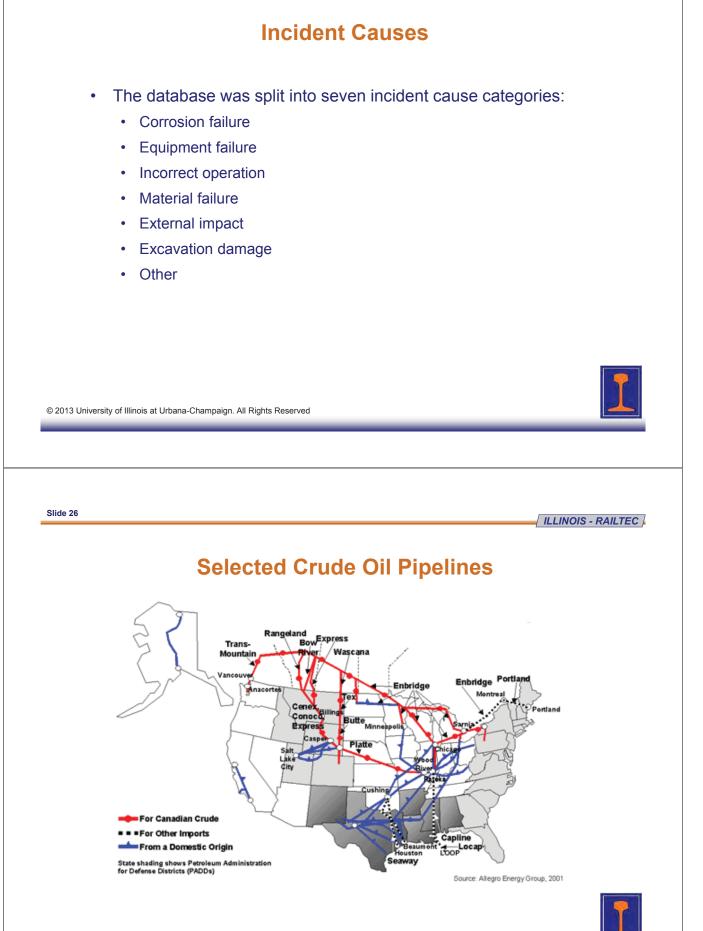
© 2013 University of Illinois at Urbana-Champaign	 All Rights Reserved
---	---

Slide 20

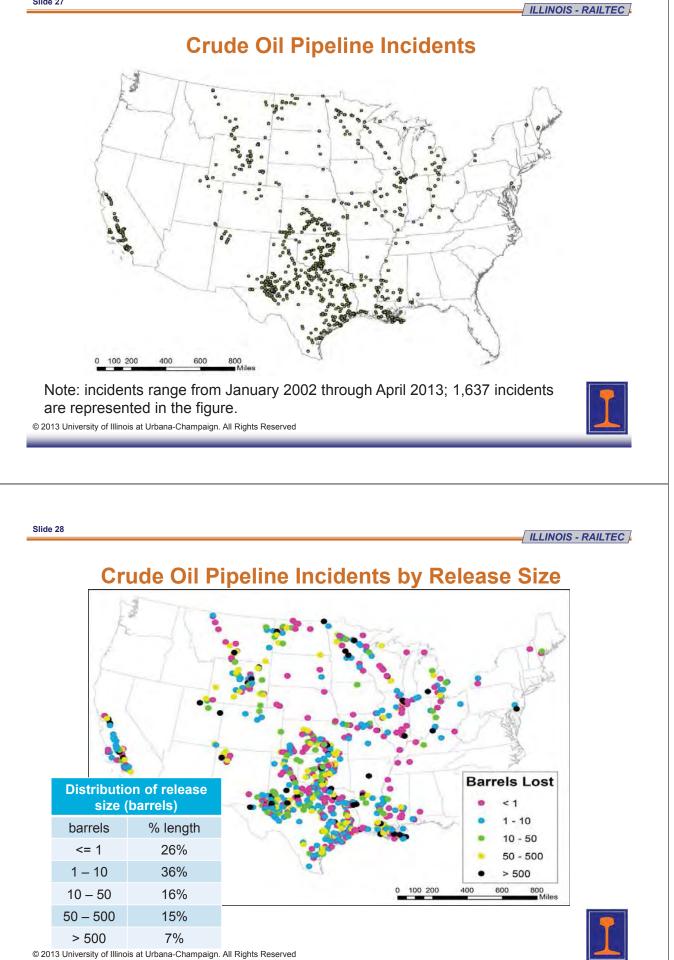
ILLINOIS - RAILTEC

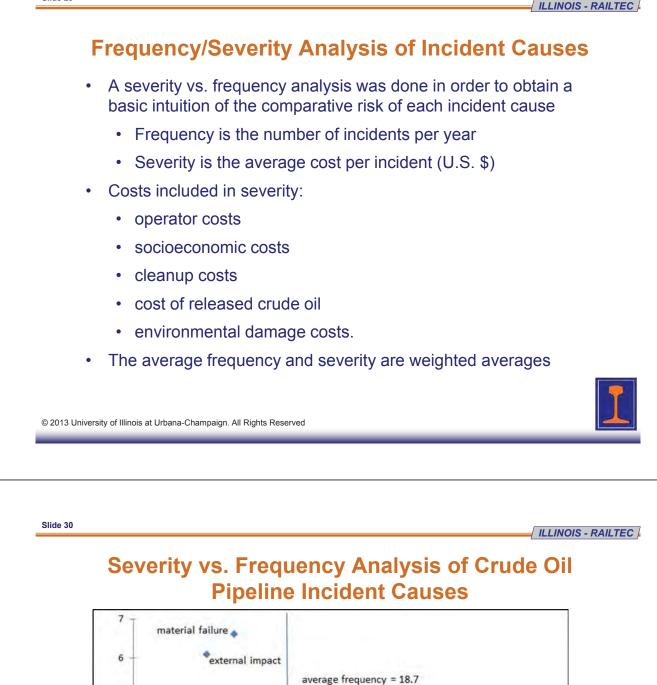
Example Pipeline Incident Data Analysis




Data Source

- Data was collected from the U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration (PHMSA) Pipeline Safety Incidents Database
- The database contains all pipeline incidents, without a minimum release size, that occurred within the United States as well as in offshore pipeline




Slide 22 ILLINOIS - RAILTEC **Data Scope** The data used was from January 1, 2002 through April 30, 2013 • All onshore, crude oil pipeline incidents that fell within the above dates and that had valid latitude and longitude coordinates were considered Any commodity other than crude oil was ignored since this • analysis focused specifically on crude oil incidents Offshore incidents were ignored since they experience different failure mechanisms than onshore pipeline · Incidents without latitude and longitude coordinates were ignored since they would be incompatible with the analysis method

average severity = 1.1

25

Frequency (incidents/year)

30

35

corrosion

failure

•

50

equipment

failure

45

40

© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

5

other

incorrect operation .

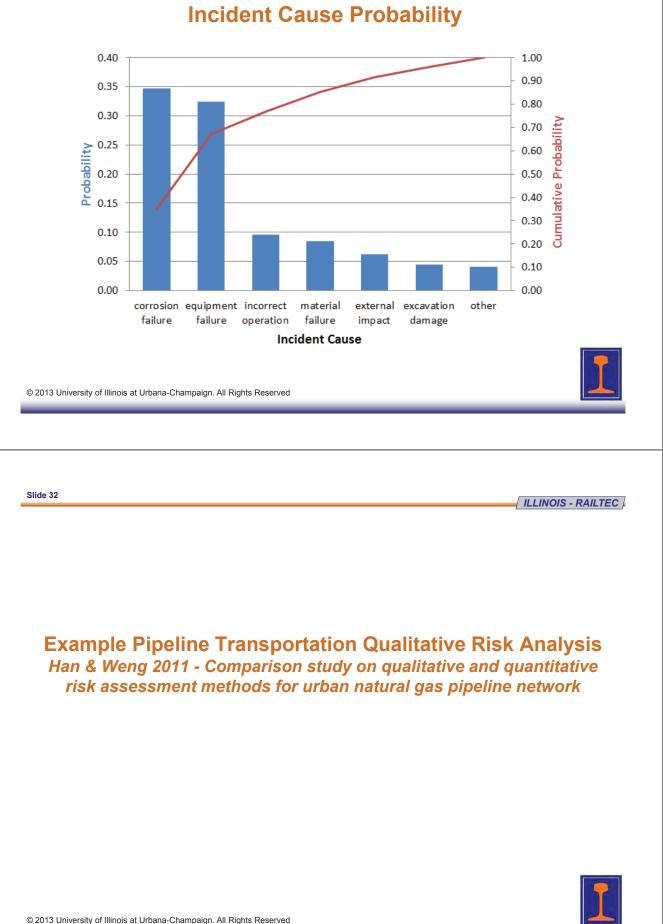
10

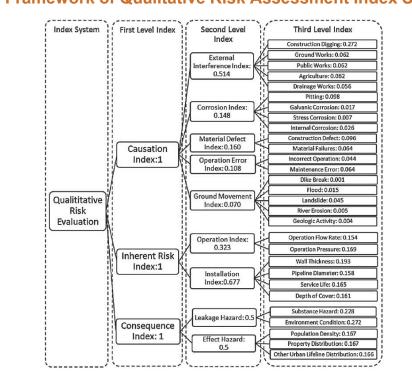
excavation damage

15

20

5


Severity (Million \$) 4


3

2

1

0 0

The Framework of Qualitative Risk Assessment Index System

© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

Slide 34

				1NOIS - K
Table 1 Causation index evaluation for pipeli	ine 1 of small urban natural gas pipe	line network.		
Third level index	Weights	Characteristic information	Value	
Construction digging	0.272	Frequent	7	
Ground works	0.062	Extraordinary frequent	10	
Public works	0.062	Not frequent	4	
Agriculture	0.062	Scarcely	1	
Drainage works	0.056	Frequent	7	
Pitting	0.098	Corrosion resistant	5	
Galvanic corrosion	0.017	Electric potential: -100	5	
Stress corrosion	0.007	Pressure drop: 1.728 kPa	10	
Internal corrosion	0.026	Without H ₂ S	1	
Construction defect	0.096	Duration of service: 20 year	10	
Material failures	0.064	Pipeline length: 113.44 m	4	
Incorrect operation	0.044	Possible	5	
Maintenance error	0.064	Possible	5	
Dike break	0.001	None	0	
Flood	0.015	None	0	
Landslide	0.045	None	0	
River erosion	0.005	None	0	
Geologic activity	0.004	None	0	
Risk value	5.662			

Table 2

Inherent risk index evaluation for pipeline 1 of small urban natural gas pipeline network.

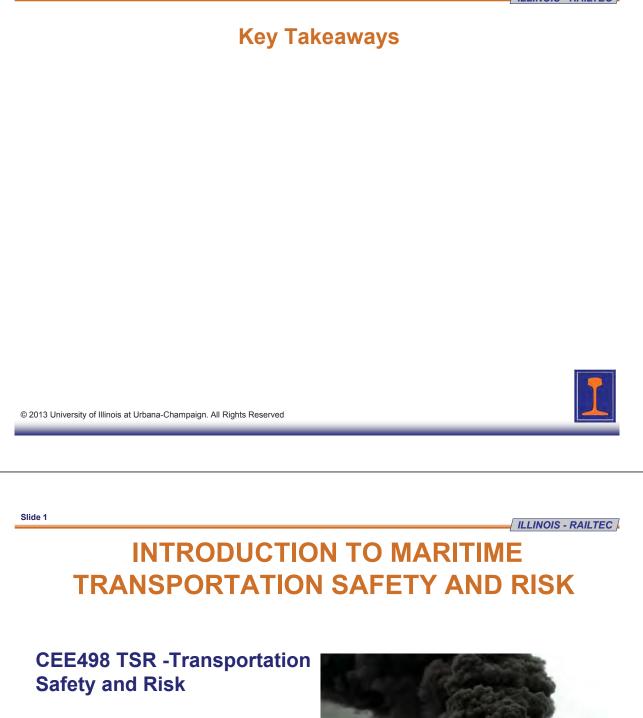

	, ,			
Third level index	Weights	Characteristic information	Value	
Operation flow rate	0.154	10.05 kg/s	0.99	
Operation pressure	0.169	9 kPa	10	
Wall thickness	0.193	2.2 cm	2.34	
Pipeline diameter	0.158	100 cm	2.50	
Service life	0.165	20 year	10	
Depth of cover	0.161	0.4 m	2.35	
Risk value	4.687			

Table 3

Consequence index evaluation for pipeline 1 of small urban natural gas pipeline network.

Third level index	Weights	Characteristic information	Value
Substance hazard	0.228	Comparative denseness	7
Environment condition	0.272	Windy	7
Population density	0.167	Extraordinary denseness	10
Property distribution	0.167	Extraordinary denseness	10
Other urban lifeline distribution	0.166	Extraordinary denseness	10
Risk value	8.500		

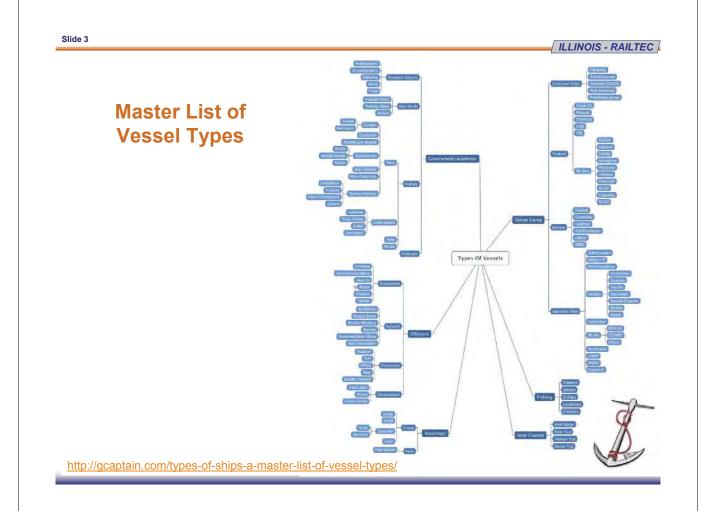
ILLINOIS - RAILTEC

Dr. Rapik Saat, Ph.D.

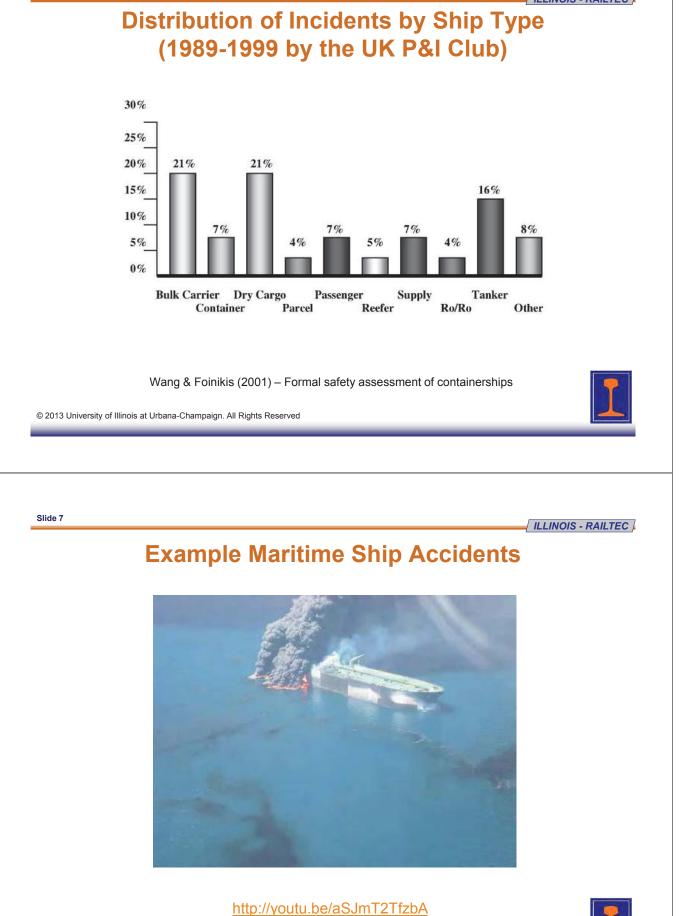
Rail Transportation and Engineering Center – RailTEC

Department of Civil & Environmental Engineering

University of Illinois at Urbana-Champaign, U.S.A.

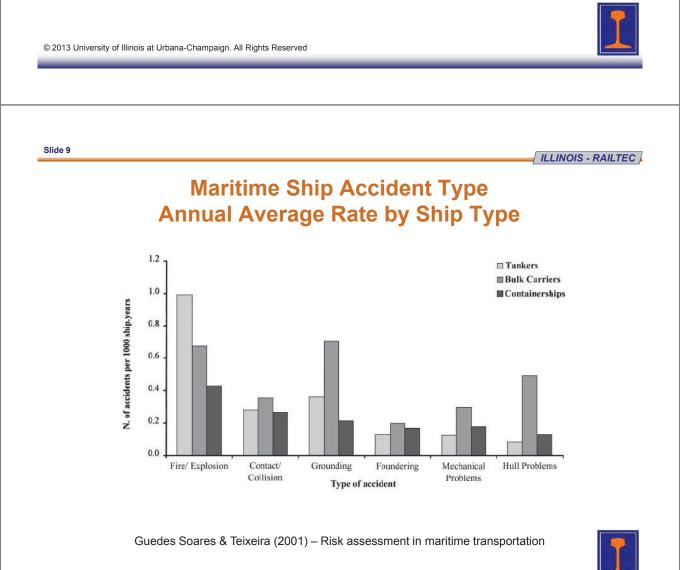


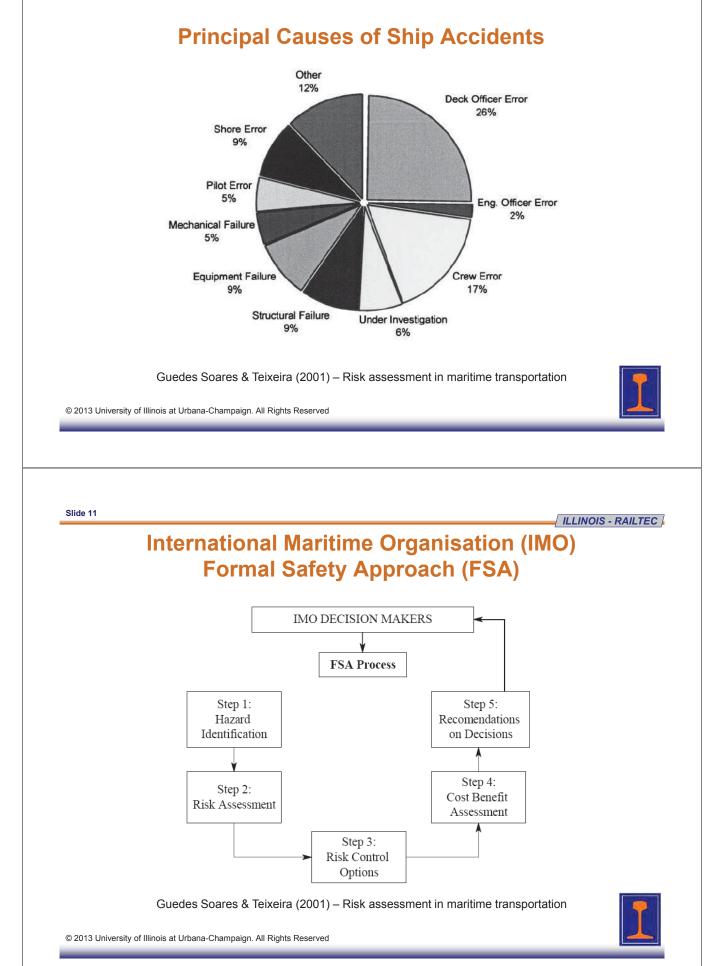
Learning Outcomes

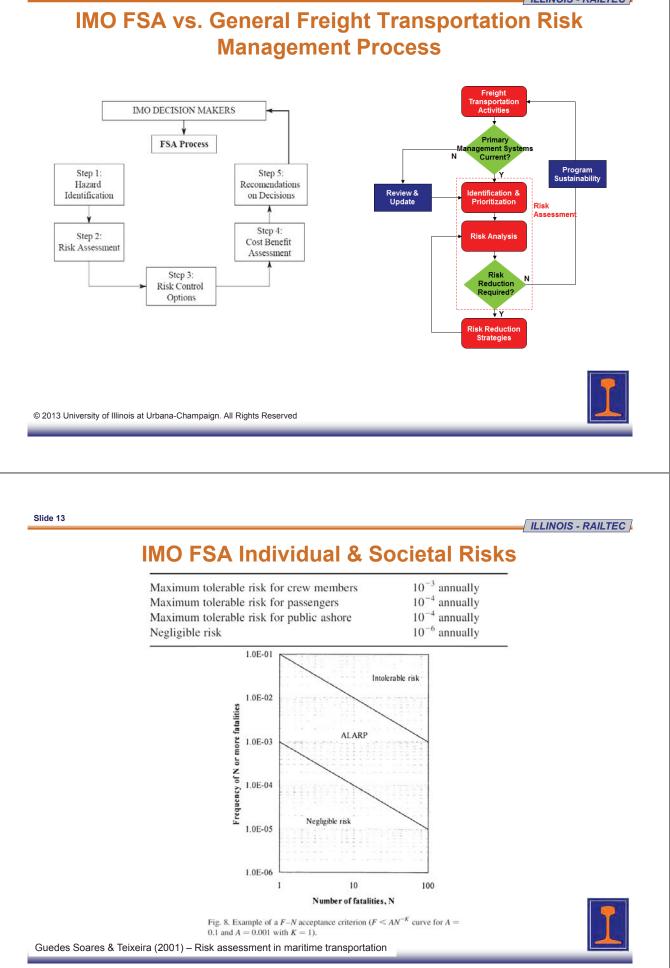

At the end of this lecture students will be able to:

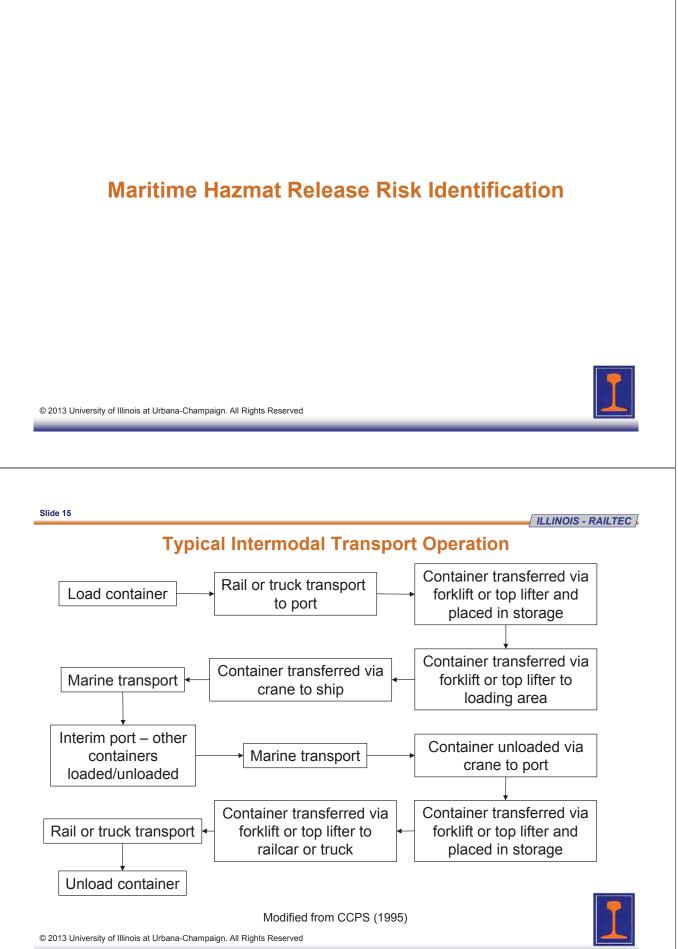
- 1. Understand different types of maritime ship accidents
- 2. Identify maritime hazmat release incident risk factors
- 3. Develop simple maritime hazmat risk model

 $\ensuremath{\mathbb{C}}$ 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

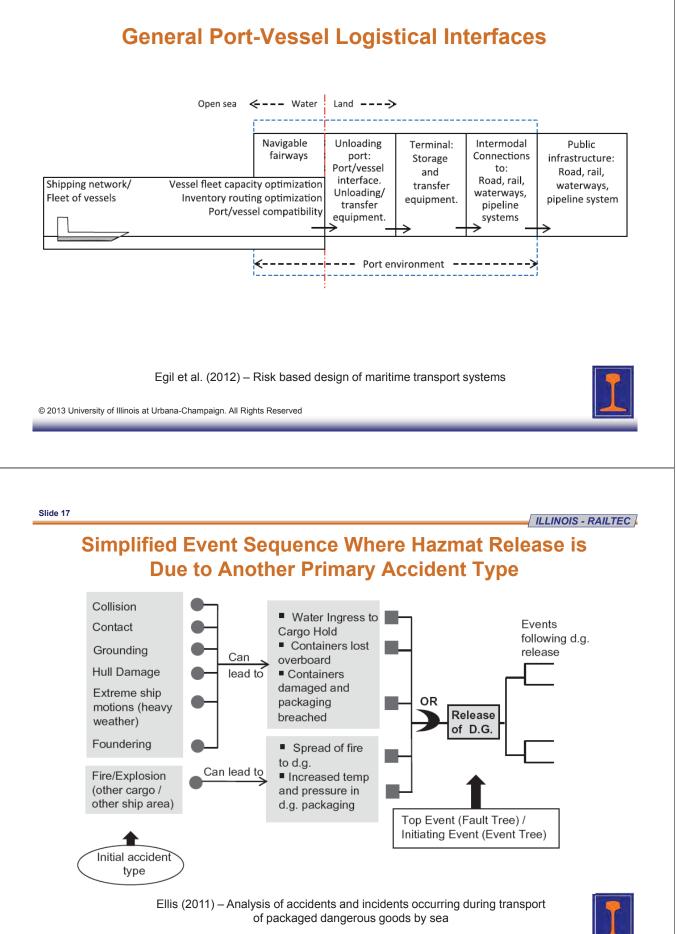


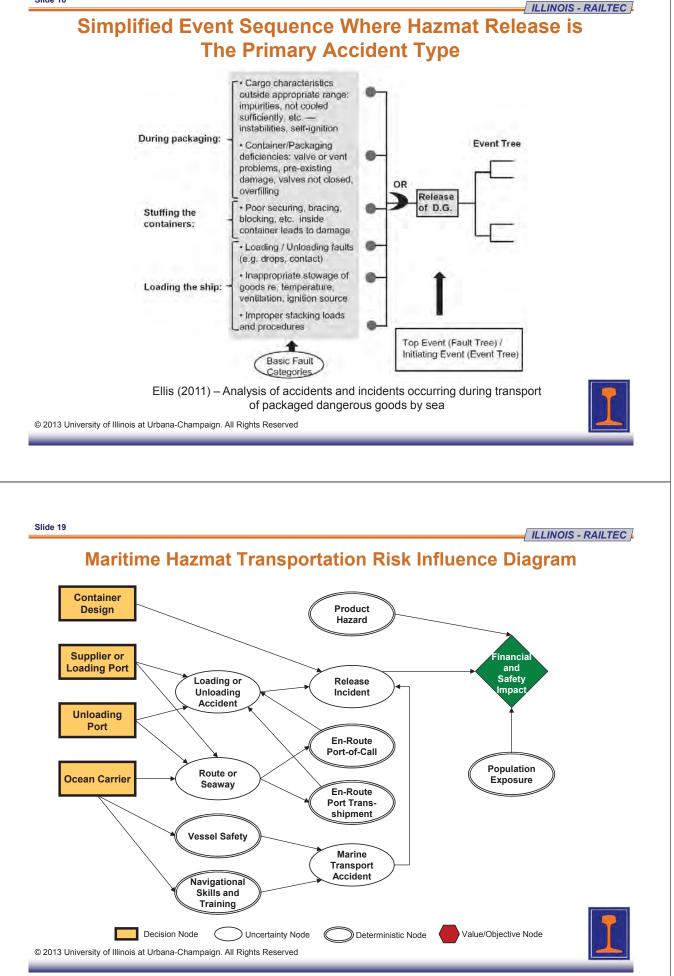

Types of Cargo Ships BULK CARRIERS OIL TANKERS REFRIGERATED LIVESTOCK CARRIERS CARGO SHIPS NAME OF CASE LNG CARRIERS CAR CARRIERS CONTAINER SHIPS DRY CARGO HEAVY LIFT RO-RO VESSELS VESSELS TUGS VESSELS http://stevesmaritime.com/mships.html © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved Slide 5 ILLINOIS - RAILTEC **Intermodal Tank Containers** -© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

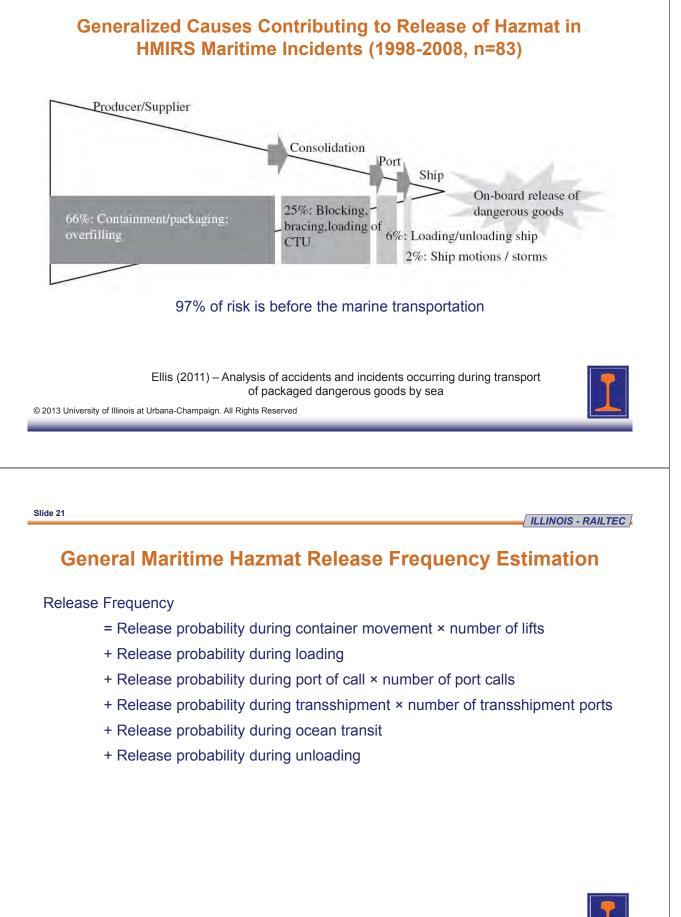



Maritime Ship Accident Types

- Fire/Explosion
- Collision Striking or being struck by another ship, whether under way, anchored or moored (excludes striking underwater wrecks)
- Contact Striking or being struck by an external object, but not another ship or the sea bottom (includes striking offshore rigs/platforms)
- Grounding Striking the sea bottom, shore or underwater wrecks (also termed Wrecked or Stranded)
- Foundering Sinking due to rough weather, leaks, breaking in two, etc.
- Mechanical Problems
- Hull Problems Structural failures







Simplified Maritime Hazmat Release Frequency Estimation

Release Frequency

- = Release probability during container movement × number of lifts
- + Release probability during loading¹
- + Release probability during port of call² × number of port calls
- + Release probability during transshipment³ × number of transshipment ports
- + Release probability during ocean transit
- + Release probability during unloading¹

Notes:

- Loading/unloading refers to the risk of dropping the container (Probability of dropped object onto fixed installation = 1.4 × 10⁻⁵ per lift)
- 2. Port of call refers to the risk of dropping other containers onto the container of interest at en-route ports (Probability of dropped object onto vessel = 1.6×10^{-6} per lift)
- Transshipment refers to transferring the container to another ship at en-route ports (assumed similar probability to loading/unloading accident = 1.4 × 10⁻⁵ per lift)

Probability source: International Association of Oil and Gas Producers' Risk Assessment Data Directory

© 2013 University of Illinois at Urbana-Champaign. All Rights Reserved

Slide 23

W

ILLINOIS - RAILTEC

Maritime Hazmat Release Risk Screening Model $R_{a,b} = \sum_{i,i} P(A_i) \times P(R|A) \times Pop_i$

 $R_{a,b}$ = hazmat release risk index due to transport by sea between port of origin *a* to port of destination *b*

P(A_j) = probability of accident impact involving hazmat container due to shore activity *j* (e.g. loading, unloading, transshipment, port-of-call)

Shore Activity j	Probability
Loading/Unloading	1.4 × 10⁻⁵
Transshipment	1.4 × 10⁻⁵
Port-of-Call	1.6 × 10 ⁻⁶

[data source: International Association of Oil and Gas Producers' Risk Assessment Data Directory]

P(R|A) = conditional probability of release of a damaged hazmat container = 0.0305 [data source: previous U of I study]

Pop_i = population class index near port *i*

7 (5 million or greater), 6 (less than 5 million to 1 million), 5 (less than 1 million to 500,000), 4 (less than 500,000 to 250,000), 3 (less than 250,000 to 100,000), 2 (less than 100,000 to 50,000), 1 (less than 50,000)

[data source: ESRI's World Cities or local census]

PORT OF NEW ORLEANS PORT OF JACKSONVILLE Population Population Port Port Shore Activity Shore Activity Risk Index Risk Index Class Class 1 New Orleans 5 60E-05 1 Jacksonville 7 00E-05 Loading 4 Loading 5 2 Port Everglades 2 Caucedo, Dominican Republic 8.40E-05 Port of Call 6.40E-06 Transshipment 6 4 6.40E-06 9.60E-06 3 Santos, Brazil Port of Call 4 3 Suape Port of Call 6 4 Santos, Brazil 6.40E-06 4 Buenos Aires, Argentina Port of Call 7 1.12E-05 Port of Call 4 5 Montevideo, Uruguay Port of Call 6 9.60E-06 5 Buenos Aires, Argentina Port of Call 7 1.12E-05 6 Rio Grande, Brazil Port of Call 2 3.20E-06 6 Rio Grande, Brazil Port of Call 2 3.20E-06 1.60E-06 7 Navegantes, Brazil Port of Call 2 3.20E-06 7 Itapoá Port of Call 1 8 Santos, Brazil Port of Call 4 6.40E-06 8 Rio de Janeiro, Brazil Port of Call 7 1.12E-05 9 Itaguai, Brazil Port of Call 3 4.80E-06 9 Salvador, Brazil Unloading 6 8.40E-05 10 Salvador, Brazil Unloading 6 8.40E-05 Total Risk 2.04E-04 Total Risk 2.69E-04 3.0E-04 2.5E-04 24% risk reduction Release Risk Index 2.0E-04 1.5E-04 1.0E-04 5.0E-05 0.0E+00 New Orleans Jacksonville © 2013 University of Illinois at Urbana-Champaign. All Rights Reserved Slide 25 ILLINOIS - RAILTEC **Key Takeaways**

Example Maritime Hazmat Release Risk Screening